Z



# www.FirstRanker.com

www.FirstRanker.com

| 17ELN 15/25 |  |  |  |
|-------------|--|--|--|

# First/Second Semester B.E. Degree Examination, June/July 2019 **Basic Electronics**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each in odale.

# Module-1

- a. What is PN junction diode? With the help of circuit diagram, explain the VI characteristics of a diode. (07 Marks)
  - b. What is rectifier circuit? Explain the classification of the rectifier. Derive the following expressions for Half-wave rectifier: (i) ld e /I (iv) y (08 Marks)
  - Design a Zener diode voltage regulator circuit to meet the following specifications:  $I_L = 20 \text{ mA}$ ,  $V_0 = 5V$ ,  $P_z = 500 \text{ mW}$ ,  $V_i = 12 \pm 2V$  and  $I_{zmin} - 8 \text{ mA}$ . (05 Marks)

## OR

- a. What is a transistor? What are its applications? Explain the various current gains in a transistor and derive the relation between a and I.
  - With a neat circuit diagram, explain the input and output characteristics of the common emitter configuration. (08 Marks)
  - Explain the operation of full wave rectifier with capacitor filter. (05 Marks)

# Module-2

- a. For the base bias circuit, Vcc = 18V,  $R_{c} = 2.2$  KO, RB = 470 K1 and = 100. Find  $I_B$ ,  $I_C$ and Va. Draw the DC load line and locate the operating point. (07 Marks)
  - b. Draw the circuit diagram of the voltage divider biasing circuit. Derive the expressions of Is (05 Marks)
  - c. List out the various deal op-amp characteristics. Explain the terms CMRR and Slew rate. (08 Marks)

# OR

- a. Derive the output equation of the inverting adder. Design an adder op-amp circuit to obtain = --(0.1V, + 0.5V, + 20V, ). Select Rf = 10 KO. an output voltage (07 Marks)
  - b. What is an integrator? Derive its output equation.

(05 Marks)

c. Derive the output expressions for the following op-amp applications:

(i) Voltage follower

(ii) Subtractor

(08 Marks)

## Module-3

- a. What are Radix-2, Radix-8, Radix-10 and Radix-16 number system? Perform the following operations:
  - i)  $(1234.56)8 = (?)_{10}$
- ii)  $(BAD.DAD)_{in} = (?)8$
- iii) (988.86)1o= (?)I6

(08 Marks)

- b. Perform the following using 2's complement method:
  - (15)io (28)io
- ii) (1011.10)2-- 0000.002

(05 Marks)

- c. Write the symbol and truth table of the following gates: ii) NOR
  - iii) XOR
- iv) NAND

(07 Marks)





## www.FirstRanker.com

### www.FirstRanker.com

17ELN 15/25

#### OR

- 6 a. Simplify and realize the following Boolean expressions using basic gates:
  - i) Y=ABC+ABC+AB+AB
  - ii) Y = ABC + ABC + ABt + ABC
  - iii) Y = (A +B)(A +C)(B+C)

(08 Marks)

Implement XOR gate using only NOR gates.

(05 Marks)

Write truth table of half-adder and full-adders. Realize the full-adder using two half-adders.

(07 Marks)

(06 Marks)

## Module-4

- 7 a. What is flip-flop and latch? Explain the operation of SR latch using NAND gates. (07 Marks)
  - Explain the working of clocked SR flip-flop with a suitable logic diagram and a truth table.
    - (08 Marks) (05 Marks)
  - Explain the working of NAND gate latch and NOR gate latch.

- O
- 8 a. What is microcontroller? List out the main features of 8051 microcontroller. (05 Marks'
  - b. With a neat block diagram, explain the architecture of 8051 microcontroller. (09 Marks)
  - What is stepper motor? Explain the working and interfacing of stepper motor to a 8051 microcontroller.

# Module-5

- a. What is amplitude modulation and frequency modulation? With the help of neat waveform, derive the expression for AM wave. (07 Marks)
  - b. A carrier signal with Ac = 40 V and f<sub>e</sub> = 1 MHz is amplitude modulated with a modulating signal A<sub>m</sub> = 4V and f<sub>m</sub> = 2.5 kHz. The depth of the modulation is 75%. Calculate the following: (i) Pc (ii) P<sub>T</sub> (iii) Psa (iv) BW (v) Sideband frequencies. Assume R = (07 Marks)
  - c. What is demodulation? Explain the working of AM detector circuit. (06 Marks)

### OR

- a. What is transducer? Explain the working of resistance transducer and resistance thermometer. (07 Marks1
  - What is LVDT? Explain the construction, operation and applications of LVDT. (07 Marks,
  - Explain the working of piezoelectric and photoelectric transducers.

\* \* \* \* \*

E. SOciet<sub>Yip</sub>

