

www.FirstRanker.com

www.FirstRanker.com

17ELN 15/25

First/Second Semester B.E. Degree Examination, June/July 2019 Basic Electronics

Time: 3 hrs.

1

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each in •dale.

Module-1

- a. What is PN junction diode? With the help of circuit diagram, explain the VI characteristics of a diode. (07 Marks)
 - b. What is rectifier circuit? Explain the classification of the rectifier. Derive the following expressions for Half-wave rectifier: (i) Id_e /I (iv) y (08 Marks)
 - c. Design a Zener diode voltage regulator circuit to meet the following specifications: $I_L = 20 \text{ mA}, \text{ Vo} = 5\text{V}, P_Z = 500 \text{ mW}, \text{ Vi} = 12 \pm 2\text{V} \text{ and }_{1\text{zmin}} = 8 \text{ mA}.$ (05 Marks)

OR

- 2 a. What is a transistor? What are its applications? Explain the various current gains in a transistor and derive the relation between **a** and I. (07 Marks)
 - b. With a neat circuit diagram, explain the input and output characteristics of the common emitter configuration. (08 Marks)
 - c. Explain the operation of full wave rectifier with capacitor filter. (05 Marks)

Module-2

- 3 a. For the base bias circuit, Vcc = 18V, $R_{e^-} = 2.2$ KO, RB = 470 K1 and = 100. Find I_B , Ic and Va. Draw the DC load line and locate the operating point. (07 Marks)
 - b. Draw the circuit diagram of the voltage divider biasing circuit. Derive the expressions of Is and VcE. (05 Marks)
 - c. List out the various deal op-amp characteristics. Explain the terms CMRR and Slew rate.

(08 Marks)

OR

a. Derive the output equation of the inverting adder. Design an adder op-amp circuit to obtain an output voltage = --(0.1V, + 0.5V, + 20V,). Select Rf = 10 KO. (07 Marks)
b. What is an integrator? Derive its output equation. (05 Marks)
c. Derive the output expressions for the following op-amp applications:

(i) Voltage follower
(ii) Subtractor

Module-3

- 5 a. What are Radix-2, Radix-8, Radix-10 and Radix-16 number system? Perform the following operations:
 - i) $(1234.56)8 = (?)_{10}$ ii) $(BAD.DAD)_{in} = (?)8$ iii) (988.86)10= (?)I6 (08 Marks) b. Perform the following using 2's complement method: i) $(15)i0^{-}(28)i0$ ii) (1011.10)2-0000.002 (05 Marks) c. Write the symbol and truth table of the following gates: i) AND ii) NOR iii) XOR iv) NAND (07 Marks)

www.FirstRanker.com

ଅ ପ

0 V 4. O

Any revealing of identification, appeal to evaluator and

N

4

Important Note : 1. On completing your answers, npulsorily draw diago

FirstRanker.com

8

www.FirstRanker.com

www.FirstRanker.com

17ELN 15/25

OR

- 6 a. Simplify and realize the following Boolean expressions using basic gates:
 - i) Y=ABC+ABC+AB+AB
 - ii) Y = ABC + ABC + ABt + ABC
 - iii) $Y = (\overline{A + B})(A + C)(B + C)$
 - b. Implement XOR gate using only NOR gates.
 - c. Write truth table of half-adder and full-adders. Realize the full-adder using two half-adders.

(07 Marks)

(08 Marks)

(05 Marks)

Module-4

7 a. What is flip-flop and latch? Explain the operation of SR latch using NAND gates. (07 Marks)b. Explain the working of clocked SR flip-flop with a suitable logic diagram and a truth table.

(08 Marks) (05 Marks)

c. Explain the working of NAND gate latch and NOR gate latch.

OR

- a. What is microcontroller? List out the main features of 8051 microcontroller. (05 Marks'
 - b. With a neat block diagram, explain the architecture of 8051 microcontroller. (09 Marks)
 - c. What is stepper motor? Explain the working and interfacing of stepper motor to a 8051 microcontroller. (06 Marks)

Module-5

- 9 a. What is amplitude modulation and frequency modulation? With the help of neat waveform, derive the expression for AM wave. (07 Marks)
 - b. A carrier signal with Ac = 40 V and $f_e = 1$ MHz is amplitude modulated with a modulating signal $A_{,y} = 4$ V and $f_m = 2.5$ kHz. The depth of the modulation is 75%. Calculate the following: (i) Pc (ii) P_T (iii) Psa (iv) BW (v) Sideband frequencies. Assume R = (07 Marks)
 - c. What is demodulation? Explain the working of AM detector circuit. (06 Marks)

OR

a. What is transducer? Explain the working of resistance transducer and resistance thermometer. (07 Marks1
 b. What is LVDT? Explain the construction, operation and applications of LVDT. (07 Marks_)

* * * * *

- c. Explain the working of piezoelectric and photoelectric transducers.
 (0) Marks, (0
 - Explain the working of plezoelectric and photoelectric transducers.

E. SOciet_{Yip}