

www.FirstRanker.com

www.FirstRanker.com

socsetro

cHworYI

USN

17PHY12/22

First/Second Semester B.E. Degree Examination, June/July 2019 **Engineering Physics**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing one full question from each module. 2. Physical Constants : Velocity of light, $c = 3 \times 10^8$ ins'''

Mass of electron, $tn = 9.1 \times 10^{-31}$ Boltzmann constant, $Kg = 1.38 \times 10^{-23} . 1/k$ Charge of an electron, $e = 1.6 \times 10^{-49} C$ Avagadro number, $NA = 6.02 \times 10^{26}$ /k mole

Module-1

1 a. What is ultraviolet catastrophe? Discuss in brief Wien's law and Rayleigh					
, ¹⁾ 0 <u>c</u>		explain blackbody radiation_ (06 Marks)			
•_ '		b. Solve the Schrodinger's wave equation for the allowed energy values in the case of particle			
;)		in a box and also find eigen function for the same and represent with figure. (10 Marks)			
		c. Calculate the wavelength associated with an electron having a kinetic energy of 100 eV.			
0		(04 Marks)			
• .0		OR			
ct	2	a. Define group velocity and phase velocity. Derive the relation between the two. (06 Marks)			
		b. Mention the properties of the wave function. Set up time-independent one-dimensional			
to \bar{a}^a .		Schrodinger's equation. (10 Marks)			
8		c. In a measurement that involved a maximum uncertainty of 0.003%, the speed of an electron			
• Z		was found to be 800 ms '. Calculate the corresponding uncertainty involved in determining			
i9		its position. (04 Marks)			
7					
čņ	•	Module-2			
•1	3	a. Define the following terms: (1) Drift velocity (ii) Relaxation time. Discuss the drawbacks			
2		of classical free electron theory in metals. (08 Marks)			
3 m 4		b. Define critical magnetic field. Explain types of super conductors. Mention applications of			
шт, /‴-0		super conductors. (00 Marks)			
×, ,,-		c. The effective mass of an electron in Silicon (S1) is 0.31 m_0 , where m_0 is free electron matrix for the electron matrix E_1 and the electron concentration for Si at 200 K assuming that Eermi level lies exectly in the			
4 U v)		middle of energy gap. Given energy gap of $Si = 11 \text{ eV}$ (04 Marks)			
-a 2		$(\mathbf{U} + \mathbf{Marks})$			
u • . <u>?-</u> '		OR			
a .,	4	a. Briefly explain Fermi-Dirac statistics and discuss the dependence of Fermi-factor on			
		temperature. (06 Marks)			
7		b. State and explain Meissner effect. (05 Marks)			
		c. Explain BCS theory for superconductivity_ (05 Marks)			
a.		d. The resistivity of intrinsic Silicon at 27°C is 3000 c2m. Assuming electron and hole			
		mobilities of $0.17 \text{ m}^{-1}\text{V}^{-1}\text{S}^{-1}$ and $0.035 \text{ ni}^{-1}\text{V}^{-1}\text{S}^{-1}$ respectively. Calculate intrinsic carrier			
		concentration. (04 Marks)			

www.FirstRanker.com

17PHY 2/22

(07 Marks)

Module-3

- 5 a. Explain construction and working of semiconductor laser with the help of energy band diagram. (07 Marks)
 - b. Describe recording and reconstruction process in holography with the help of suitable diagram. Mention its applications. (09 Marks)
 - c. A medium in thermal equilibrium at temperature 300K has two energy levels with a wavelength separation of 1 p_tm. Find the ratio of population densities of the upper and lower levels. (04 Marks)

OR

- a. Obtain an expression for energy density of radiation under equilibrium condition in term of 6 Einstein's coefficients. (06 Marks)
 - Discuss types of optical fibers using suitable diagrams. b. (06 Marks)
 - Explain point to point communication system using optical fiber with block diagram. c. (04 Marks)
 - The attenuation of light in an optical fibre is estimated as 2.2 dB/km. What fractional initial d. intensity remains after 2 km and 6 km? (04 Marks)

Module-4

7 a. What are Miller Indices? Show that for cubic the distance between two successive plane

,() is given by $d = \frac{1}{VW + 1(^{2} + P)}$

- b. Define coordination number, atomic radius and atomic packing factor. Find atomic packing factor for SC, BCC and FCC. (09 Marks)
- X-rays of wavelength 1.541 A are diffracted by $(1 \ 1 \ 1)$ planes in a crystal at an angle of 30° C. in the first order. Calculate the inter atomic spacing. (04 Marks)

OR

- a. Explain the procedure followed to specify crystal planes using Miller indices with an 8 example. (05 Marks)
 - b. State and explain Bragg's law. Describe how Bragg's spectrometer is used to determine the wavelength of an x-ray beam. (10 Marks)
 - e. Draw following planes in cubic unit cell (100) (110) (011) (111) (001). (05 Marks)

Module-5

9	a. I	Explain the construction and working of scanning electron	microscope. Mention its
		applications.	(10 Marks)
	b.	Explain Ball-Milling method of synthesis of nanomatcria Is.	(06 Marks)
	c.	Write any four applications of carbon nano tube.	(04 Marks)

OR

10 a.	Explain top-down and bottom-up approach in synthesis of nano-materials.	(06 Marks)
b.	Explain the construction and working of Reddy's shock tube.	(06 Marks)
e	Describe the various quantum structures	(08 Marks)

ribe the various quantum structures.

society.,

CHIKODI LIBRARY

gn0⁰