of Ems!

First Semester B.F. Degree Examination, June/July 2019 Calculus and Linear Algebra

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE MI questions, choosing ONE full question from each module.
a. With usual notation, prove that $\tan (1)-\mathrm{r}{ }^{(10} \mathrm{dr}$
b. Find the radius of curvature of $a^{2} y=x^{3}-a^{3}$ at the point where the curve cuts the x-axis.
c. Show that the evolute of the parabola $y^{2}=4 a x \quad$ is $27 a y^{2}=4(x-2 a)^{\prime}$.

OR

2 a. Prove that the pedal equation of the curve $r^{n}=a " \operatorname{cosnO}$ is $a^{n} . p=r^{n \prime \prime}$.
(06 M arks)
b. Show that for the curve $\mathrm{r}(1-\cos 0)=2 \mathrm{a}, \mathrm{p}^{2}$ varies as r^{\prime}.
(06 Marks)
c. Find the angle bet ween the polar curves $r=a(1-\cos ())$ and $r=b(1+\cos 0)$.

3 a. Expand $\log (1+c \phi s x)$ by Maclaurin's series ap to the term containing x^{4}.
(06 Marks)
b. Evaluate
$\lim _{x} 01 \frac{a x+b^{`}}{3}$
(07 Marks)
c. Find the extreme
values of the function tax, $y)=x^{3}+y^{3}-3 x-12 y+20$.
(07 Marks)
OR

(06 Marks)
b. If $u=x+3 y^{2}-z^{3}, v=4 x^{-} y z, w=2 z^{-}-x y$. Evaluate $a\left(u, v, \frac{w)}{d(x, y, z)}\right.$ at the point $(1-1,0)$.
(07 Marks)
c. A rectangular box, open at the top, is to have a volume of 32 cubic feet. Find the dimensions of the box, if the total surface area is minimum.
(07 Marks)

Module-3

5 a. Evaluate by changing the order of integration

$$
\begin{equation*}
f \mathrm{fx}^{2} \cdot d y \cdot d x, a>0 \tag{06Marks}
\end{equation*}
$$

h. Find the area bounded between the circle $x^{2}+y^{2}=a^{2}$ and the line $x+y=a$.
(07 Marks)
c. Prove that I3 (m,

$$
\begin{aligned}
& \mathrm{N} \cdot \mathrm{il} \\
& \text { in }+\mathrm{n}
\end{aligned}
$$

(07 Marks)

OR

6 a. Evaluate $\int_{-c}^{c} \int_{-h}^{\mathrm{h}}\left(\mathrm{x}^{-}+\mathrm{y}^{-}+\mathrm{z}^{-}\right)$dz.dy.dx
(06 Marks)
b. Find the area bounded by the ellipse ${ }_{a^{-}}^{x}+\frac{y^{2}}{b^{-}}=1$ by double integration.
(07 Marks)
c. Show that ${ }_{o} \frac{\mathrm{~V} 0}{\sin 0} \underset{\mathbf{O}}{\mathrm{X}} \mathrm{J}, / \sin 0 . \mathrm{d} 0=$
(07 Marks)

Module-4

7 a. Solve $\left(1+e^{\prime}\right) d x+e^{\prime} \quad \mathbf{1}-\frac{X}{Y} d y=0$
(06 Marks)
b. If the air is maintained at $30^{\circ} \mathrm{C}$ and the temperature of the body cools from $80^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in 12 minutes. Find the temperature of the body after 24 minutes.
(07 Marks)
c. Solve $y p^{2}+(x-y) p-x=0$.
(07 Marks)

OR

8 a. Solve $\frac{d y}{d x}+y \cdot \tan x=y \cdot \sec x$
(06 Marks)
h. Find the orthogonal trajectory of the family of the curves $r n \cdot \operatorname{cosnO}=a^{n}$, where a is a parameter.
(07 Marks)
c. Solve the equation $(p x y) \cdot(p y+x)=2 p$ by reducing into Clairaut's form taking the substitution $\mathrm{X}=\mathrm{x}^{-}, \mathrm{Y}=\mathrm{y}^{2}$.
(07 Marks)
9 a. Find $\left|\begin{array}{cccc}\text { Module-5 } \\ \text { the rank of the matrix } \\ 1 & 2 & -2 & 3 \\ 1 & 5 & -4 & 6 \\ -1 & -3 & 2 & -2 \\ 2 & 4 & -1 & 6\end{array}\right| \begin{aligned} & \text { by applying elementary Row transformations. } \\ & \\ & \text { A }\end{aligned}$
(06 Marks)
b. Solve the following syste n of equations by Gauss-Jordan method:

$$
x+y+z=9,2 x+y-z=0,2 x+5 y+7 z=52
$$

(07 Nlarks)
c. Using Rayleigh's power method find the largest eigen value and corresponding eigen vecto of the matrix $A=\left|\begin{array}{ccc}2 & 0 & 1 \mathbb{N} \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right|$ with $X^{\prime \circ}=(\mathbf{I}, \mathbf{0}, 0)^{\prime}$ as the initial eigen vector carry out 5 iterations.
(07 Marks)

OR

10 a. For what values of and t the system of equations. $x+y+z=6, x+2 y+3 z=10, x+2 y+X . z=j _t$ may have
i) Unique solution
ii) Infinite number of solutions
iii) No solution.
(06 Marks)
b. Reduce the matrix $\left.\mathrm{A}=\left\lvert\, \begin{array}{cc}(-1 & 3\end{array}\right.\right)$ into diagonal lbrm.
(07 (harks)
c. Solve the following system of equations by Gauss-Seidel method $20 x+y-2 z=17,3 x+20 y-z=-18,2 x-3 y+20 z=25$. Carry out 3 iterations. (07 Marks)

