

Second Semester B.E. Degree Examination, June/July 2019 Engineering Mathematics - II

Time: 3 hrs .
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Solve $\left(D^{2}-4 D+4\right) y=e^{21}+\cos 2 x+4$ by inverse differential operator method.
(06 Marks)
b. Solve $\frac{d 2 y}{d x^{`}}-2 \frac{d y}{d x}+S y e^{2} x \sin x$ by inverse differential operator method.
(05 Marks)
c. Using the method of undetermined coefficients, solve $y f f-3 y^{\prime}+2 y=+e x$.
(05 Marks)

OR

2 a. Solve ${ }_{d x}^{\text {cry }} 2 \frac{\text { dy }}{d x}+y=x e x \sin x$ by inverse differential operator method.
(06 Marks)
b. Solve $\left(D^{3} 6 D^{2}+I 1 D-6\right) y=e^{-2} x+\quad$ by inverse differential operator method.(05 Marks)
c. Solve- $y^{\prime \prime}-2 y^{\prime}+y=\ldots$ by method of variation of parameters.
(05 Marks)

Module-2

3 a. Solve $(2 x-1) 2 \underset{d x^{2}}{\frac{c r}{y}}+(2 x-1) \frac{d y}{d x}-2 y=8 x^{\prime}-2 x+3$.
(06 Marks)
b. Solve $\left.x y\left(\frac{d y}{d x}\right) \quad{ }^{2}+y^{\prime}\right) \frac{d y}{d x}+x y=0$
(05 Marks)
c. Solve $x^{2}(y-p x)-p^{2} y$ by reducing into Clairaut's form and using the substation $X=x^{2}$ and $\mathrm{Y}=$
(05 Marks)

OR

4 a. Solve $x^{-1} y^{\prime \prime}-x y^{\prime}+2 y=x \sin (\log x)$.
(06 Marks)
b. Obtain the general solution of the differential equation $p^{2}+4 x^{\prime} p-12 x^{4} y=0$.
c. Obtain the general and singular solution of $y=2 p x+p$. .

Module-3

5 a. Form the partial differential equation by eliminating the arbitrary function from the relation $Z=y f(x)+x g(y)$.
(06 Marks)
b. Solve $\frac{}{\text { axay }}=\ldots \quad \mathrm{x}$ sin y for which $\underset{()^{1}}{(z}=-2 \sin \mathrm{y}$ when x 0 and z 0 when y is an odd multiple of $\mathrm{n} / 2$.
c. Derive one dimensional wave equation $\frac{}{\mathrm{at}^{2}}=\frac{\mathrm{ax2}}{\mathrm{ax}}$

15MAT21

OR

6 a. Form a partial differential by eliminating the arbitrary function (I) from the relation $4)\left(x^{2}+y^{2}+z^{2}, z 2 _2 x y\right)=0$.
(06 Marks)
b. Solve $\frac{a^{2} z_{z}}{\mathbf{a x}^{2}}+4 z=0$, given that when $x=0, z=e^{\prime \prime}$ and $\frac{a z}{a \mathbf{x}}=2$ (05 Marks)
c. Determine the solution of the heat equation $\frac{a u}{a t}=c^{2} \frac{\stackrel{a x}{a \underline{a n}!}}{a K 2}$ by the method of separation of variables for the constant K is positive.
(05 Marks)

Module-4

7 a. Evaluate if $(x y+e) d y d x$
(06 Marks)
4a 21 ax
b. Evaluate dydx by changing the order of integration.
(05 Marks)
c. Obtain the relation between the beta and gamma function in the form

$$
\mathbf{p}(\mathbf{m}, \mathrm{n})=\frac{\mathrm{km})-1(0}{1(\mathrm{ni}+\mathrm{n})}
$$

(05 Marks)

OR

8 a. Evaluate fJe ${ }^{4,2}$ dxdy by changing into polar coordinates.
(06 Marks)
00
Evaluate $\begin{array}{lll} & & \mathrm{fe}^{`}-Y " d z d y d x\end{array}$
(05 Marks)
c. Using beta and gamma function, proye that $\frac{x^{2}}{-x^{4}} d x_{1,-J 1+x^{4}}^{y} \quad 4-112$
(05 Marks)

Module-5

9

(06 Marks)
 (05 Marks)
c. Find $\left.\mathbf{r}^{i}\left|\frac{\mathrm{~s}}{\mathrm{~s}^{ \pm \mathrm{a}^{2} 22}}\right| \right\rvert\,$ using convolution theorem. (05 Marks)

OR

c. Employ the Laplace transform to solve the differential equation $y^{\prime \prime}(t)+4 y^{\prime}(t)+4 y(t)=e^{\prime}$ with the initial condition AO$)=0$ and $\mathrm{y}^{\prime}(0)=0$.

