Max. Marks:100

Time: 3 hrs.

First/Second Semester B.E. Degree Examination, June/July 2014

Elements of Civil Engineering and Engineering Mechanics

			and the design of the q	uestions on sheets oth					
1 :	a.	Cho	ose the correct answer	PART — A	•	(04 Marks)			
		i)		ering involves the stud	v of	(04 .141113)			
		1)	A) water	B) soil	C) oil	D) all of these			
		ii)	A bascule bridge is a	/	C) 011	D) un or mese			
		,	A) arch bridge	B) floating bridge	C) movable bridge	D) none of these			
		iii)	Kerbs are the compo		c) movable bridge				
		,	A) dam	B) bridges	C) roads	D) buildings			
		iv)	Inspection gallery is	, .		-,			
			A) bridge	13) darn	C) harbour	D) airport			
1	b.	Brief	, .	f any three fields of civ	. 1	(09 Marks)			
	c.		ain different types of r		•\/((07 Marks)			
2 a.	Ch	oose	the correct answers	for the followingom	ok %OP%	(04 Marks)			
		i)		a key into lock, follow					
		_	A) coplanar forces I		C) lever	D) couple			
		ii)		ent of a horizontal force	ne is				
			A) zero	B) one	C) both A and B	D) two			
		iii)	Two equal and oppos	site forces separated by	y a distance will produc	e.			
			A) translation	0.	B) rotation				
			C) both translation a	nd rotation	D) none of these				
		iv)	The resultant of two	o concurrent forces b	ecomes maximum and	d minimum, if angle			
			between them is	20					
			A) 0° and 180°	 B) 0° and 90° 	C) 90° and 0°	D) 0° and 0°			
1	b.	Defin	ne force and state its cl	haracteristics.		(06 Marks)			
	c.	Forces acting on the gusset plate of a joint in a bridge truss are shown in Fig.Q2(c).							
		Determine the values of '13' and '0' to maintain the equilibrium of the joint.							
			The same	5000 4					
			110						
				6° \\ \\ 0					
				A					
				/~~					
				3000nl					
				"L/					
				Fig.Q2(c)		(10 Marks)			
		oose	the correct answers	for the following:		(04 Marks)			
3 a.	Ch		T1	ng the recultant of a exp	stem of forces is called				
3 a.	Ch	i)	-						
3 a.	Ch	i)	A) resultant	B) composition	C) resolution	D) none of these			
3 a.	Ch	i) ii)	A) resultant	B) composition		,			
3 a.	Ch	_	A) resultant	B) composition	C) resolution	,			

B) 90°

C) 180°

D) 45°

between the forces is

A) 0°

www.FirstRanker.com/10CTV13/23

b. State and prove Lami's the

(06 Marks)

c. A 100 N sphere is resting in a trougn as snown in Fig.Q5(c). Find the reactions at the contact points. Assume all contact surfaces are smooth.

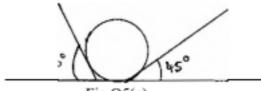
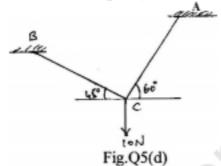



Fig.Q5(c)

(06 Marks)

d. An electric lamp fixture weighing 10 N hangs. From a point 'C' by strings AC at angle 60° and BC at angle 45° as shown in Fig.Q5(d). Determine the forces in strings. (04 Marks)

6 a. Choose the correct answers for the following:

(04 Marks)

- Support reactions for statically determinate beams can be determined by applying
 - A) Varignon's theorem

- B) Lami's theorem
- C) conditions of static equilibrium
- D) none of these
- ii) When loads acts constant rate over given length of beam, it is called as
 - A) point load
- B) UDL
- C) UVL

ioI4/

D) none of these

- iii) A fixed support can have _____ reactions.
 - A) 1

- B) 2
- C) 2
- D) 4
- iv) The number of reactions components at a hinged end of a beam is
 - A) 0
- B) 2
- C) 3
- D) 1
- Find the reactions for a cantilever beam shown in Fig Q6(b).

Mb __>i<__

Fig.Q6(b)

(06 Marks)

c. Determine the forces in all the members by the method of joints.

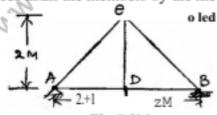


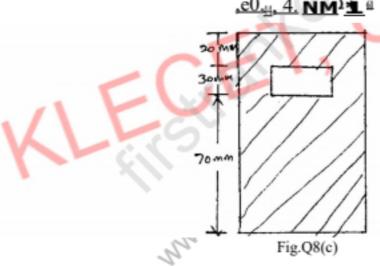
Fig.Q6(c)

(10 Marks)

7 a. Choose the correct answers for the following:

(04 Marks)

- A friction force always acts _____ to the contact surface.
 - A) normal
- B) parallel
- C) at 45°
- D) both A and C
- ii) _____ friction is observed in the flow of liquids and gases.
 - A) fluid
- B) static
- C) sliding
- D) kinetic


3 of 4

www.FirstRanker.UC1V13/23

		1	The same						
	iii)	Compared to static	∍"er n rrea	on is					
			B) smaller	C) very large	D) zero				
	iv)	Angle of friction is _	angle of	repose.					
		A) =	B) >	C) <	D) both A and B				
b. /	A bloc	k weighing 800 N res	ts on an incline	d plane at 12° to the horizon	ntal. If the coefficient				
				pull the body up the plane	, when the line of the				
force is (i) parallel to the plane and (ii) horizontal. (10									
C. Define: i) angle of friction, ii) coefficient of friction, iii) cone of friction.									
					(04 Marks)				
8 a.	4.5	hoose the correct answers for the following:							
	i)	The unit of radius of		C) 1	4				
		A) mm	B) min ²	C) mm ³	D) nun				
	The moment of inertia of a triangle of base 'b' and height 'h' about its base is								
		A) bh3	B) bh4	C) bah	D) bh ³				
		36	36	12	12				
iii) The moment of inertia of a square of side 'b' shout its centroidal axis is									
		b4	b^4	b4	b3				
		A) 12	$\frac{b^4}{8}$	12,7 b ⁴	D) 12				
 iv) The polar moment of inertia of a circular area of diameter 'd' is given by 									
	_	^{\hat{1}} rtd4	7rd ⁴	r. nd 4	re itd ⁴				
		24	B) 64	32 % T	. 128				
ь.	State	and prove parallel axi	is theorem.	32, % I	b (06 Marks)				
c.			t of inertia of th	e area shaded in Fig.Q8(c)	(00 000)				
.e0.4, 4. NM¹± a									

(JO Marks)