www.FirstRanker.com

www.FirstRanker.com

14PHY12

First Semester B.E. Degree Examination, Dec.2014/Jan.2015 **Engineering Physics**

	Time: 3 hrs.		Max. Marks:100	
		Note: 1. Answer any FIVE full questions, selecting atleast ONE full question from each Part.		
Q O		2. Physical constants: Velocity of light, $C = 3 \times 10^{-8}$	<i>m/s</i> .	
Q.		Plank's constant $h = 6.625 \times 10^{-34} LS$. Mass of ele	ectrons	
٥		$m = 9.1 \times 10^{-31} \text{ kg} \cdot \text{Roltzmann's constant}$ If $= 1.38$	$R \times 10^{-23} I/K$	
-0		Avagadro number. $NA = 6.02 \times 10^{-26}/K$ mole.		
			•	
		PART —1	•	
	1 a.	Explain blackbody radiation spectrum on the basis of Plank's radiation law	. (06 Marks)	
	b.	Obtain the solution of Schrodinger's time-independent wave equation w	when applied to a	
, ∼ci		potential box of infinite height.	(07 Marks)	
g + _{vi} .	с.	What is Compton effect? Explain its physical significance.	(03 Marks)	
E 01)	d.	The position and momentum of an electron with energy 0.5 keV are determ	nined. What is the	
Б		minimum percentage uncertainty in its momentum if the uncertainty in th	e measurement of	
θ∙E		its position is 0.5A°.	(04 Marks)	
<u>g</u> ;	2 a.	What is phase velocity and group velocity in wave motion? Obtain a relation	on between them.	
0 12 O			(06 Marks)	
6 -0	b .	Set up time independent Schrodinger wave equation for free particle in one	dimension.	
• C			(06 Marks)	
-	c.	Using Heisenberg's uncertainty principle, prove that electrons cannot exist	in a nucleus.	
-0 -a	d	Calculate the wavelength associated with an electron baying $K = 100 \text{ eV}$	(04 Marks) (04 Marks)	
<u>ხ</u>	u.	Calculate the wavelength associated with an electron having K.E. 100 ev.	(04 Mai K5)	
5, V,		PART 2		
0 ^{0:1}	3 a. W	hat are the assumptions made in quantum free electron theory? Explain	the success of this	
cr: 2		theory.	(06 Marks)	
···; L 4	b.	What is Fermi level? Describe the variation of Fermi factor with temperatur	es.' (04 Marks)	
გ ^{dj}	c.	Explain Meissner effect and the different types of superconductors.	(06 Marks)	
Ĭ. W	d.	The electron concentration in an n-type semiconductor is 5×10^{17} /m ³ . N	leglecting the hole	
с		current, calculate the conductivity of the material if the drift velocity of	of the electrons is	
a.)		350 m/s in an electric field of 1000 V/m.	(04 Marks)	
E 8				
đ	4 a. W	hat is superconductivity? Explain superconductivity on the basis of BCS	theory.	
~	/ /		(06 Marks)	
0	b.	Explain the law of mass action and derive the conductivity expression of	a semi conductor.	
-			(06 Marks)	
0	c.	What is Fermi-Dirac statistics? Explain.	(04 Marks)	
0	d.	The Fermi level in silver is 5.5 eV. Find the velocity of conduction electron	s in silver.	

USN

14PHY12

(06 Marks)

(06 Marks)

(06 Marks)

(04 Marks)

PART — 3

- 5 a. Mention the conditions for laser action. Explain the working of a semi conductor laser.
 - b. Discuss the various loss factors in optical fibre communication.(08 Marks)(04 Marks)
 - c. Derive the condition for propagation of light through an optical fibre. (04 Marks)
 - d. The average power of a laser beam of wavelength 6328A° is 5mW. Find the number of photons emitted per second by the laser source. (04 Marks)
- 6 a. What is Laser? Give the construction and working of carbon dioxide laser device. (JO Marks)
 - b. What are the different types of optical fibers? Explain.
 - c. The attenuation in an optical fibre is 3.6 dB/km. What fraction of its initial intensity remains after 3km? (04 Marks)

PART — 4

- 7 a. What are Miller indices? Explain how axial intercepts in a crystal plane are converted into miller indices. (04 Marks)
 - b. Give the working principle of liquid crystal display.
 - c. Find the atomic packing factor for SC, FCC and BCC structures.
 - d. Determine the interplanar spacing for (110) planes for copper which has FCC structure and atomic radius 0.1278nm. (04 Marks)
- **8** a. Obtain an expression for the interplanar distance in a cubic crystal in terms of Miller indices.

		(05 Marks)
b.	Sketch and explain the structure of diamond crystal.	(05 Marks)
c.	Explain how Bragg's law is verified using Bragg's X-ray spectrometer.	(06 Marks)
d.	Draw the crystal planes (2 1 0) and (1 0 l) in a cubic crystal.	(04 Marks)

PART — 5

- 9 a. What are Shock waves? Explain the experimental method of producing shock waves and measuring its Mach number using Reddy's shock tube. (08 Marks)
 - b. Give the graphical representation of density of states with equation for OD, ID, 2D and 3D structures. (08 Marks)
 - c. What are the properties of carbon nanotubes?
- 10 a. What are the ultrasonic and supersonic waves? Describe in brief how the normal shock relationships are arrived. (08 Marks)
 - b. Explain the working of SEM and its applications. (08 Marks)
 - t. Describe the arc discharge method of producing carbon nanotubes. (04 Marks)