

www.FirstRanker.com

www.FirstRanker.com

USN							15ELNI5/25
First/Second Semester B.E. Degree Examination, Dec.2016/Jan.2017							
Basic Electronics							
Tin	ne: 3 hrs.						Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

1 a. Define the following diode parameters :

(05 Marks)

- Knee voltage
- ii) Maximum forward current
- iii) Peak inverse voltage
- iv) Reverse breakdown voltage
- v) Maximum power rating.

(06 Marks)

- With neat circuit diagram and waveform explain the working of Full wave Bridge Rectifier.
- Draw common emitter circuit. Sketch input and output characteristics. Also explain
 operating regions by indicating them on characteristic curve. (05 Marks)

OR 411

2 a. Write a note on voltage regulator circuit.

(05 Marks)

- b. Derive the relationship between a and R. Also calculate the a value and transistor if l₀ = 10011A and l_c = 2mA.
 c. Also calculate the a value and (04 Marks)
- With a neat diagram, explain the output characteristics of a transistor in common base configuration. (07 Marks)

Module-2

What is DC load line? Explain with near circuit the operation of voltage divider bias circuit.

(05 Marks)

What is op-amp? List the characteristics of an ideal op-amp.

(06 Marks)

- c. For the circuit shown in Fig Q3(c), compute
 - i) Three transistor currents
 - ii) Voltage drop across Rc and M1.

(05 Marks)

Fig Q3(b)

www.FirstRanker.com

www.FirstRanker.com

15ELN15/25

OR

- a. Explain how op-amp can be used as
 - An integrator Differentiator iii) Voltage follower. (06 Marks)
 - With neat circuit diagram, explain base biased method with necessary equations. (05 Marks)
 - c. Find the output of the following op-amp circuit. (05 Marks)

Fig Q4(c)

Module_3

- 5 a. Convert (1101101)2 =)10 and (96)10
 - b. Convert (FA876)16 =)8 and (237)8 =)16-
 - Design Full adder circuit.

(04 Marks) NO Marks)

(04 Marks)

- OR
- State and prove De Morgan's theorem.
- (05 Marks) (05 Marks)
- b. What are Universal gates? Realize AND, OR Gates usin niversal gates. Subtract (19)10 from (15) 0 using ls and 2s compliment methods.
- (06 Marks)

Module_4

- 7 a. Write a note on NOR gate latch.
 - Explain the working of clocked RS flip flop using NAND gates.
 - - Define microcontrollers. Write their important applications.

(06 Marks) (05 Marks)

(05 Marks)

vo444

- a. Explain the architecture of 8051 micro controller.
 - Mention the difference between latch and Flip flop.

- (02 Marks)
- Write a note on interfacing of 8051 microcontroller with stepper motor.
- (06 Marks)

(08 Marks)

Module_5

Explain the block diagram of communication system.

- (05 Marks)
- Define Amplitude modulation. Derive mathematical expression for the same. Draw waveforms. (06 Marks)
- Explain the construction and the principle of operation of LVDT.
- (05 Marks)

OR

- 10 a. List the differences between Amplitude modulation and frequency modulation.
- (05 Marks)

Explain frequency modulation with neat waveforms.

- (05 Marks)
- c. A carrier of 10V peak and frequency 1001(1-12 is amplitude modulated by a sine wave of 4V peak and frequency 1000Hz. Determine the modulation index for the modulated wave and draw the amplitude spectrum. (06 Marks)

.