

15MAT 11
First Semester B.E. Degree Examination, Dec.2016/Jan. 2017 Engineering Mathematics - I

Time: $\mathbf{3}$ hrs.
Note: Answer FIVE full questions, choosing one full question from each module.

I
a. If $y-e^{x} \cos ^{3} x$, find y_{n}.

Module:-1
b. Find the angle between the curves

$$
\begin{equation*}
r=\frac{a}{1+\cos ()} \text { and } r-\frac{b}{1-\cos O} . \tag{05Marks}
\end{equation*}
$$

c. Find the radius of curvature of the curve $\mathrm{x}^{4}+\mathrm{y}^{4}=\mathbf{2}$ at the point $(1,1)$.
(05 Marks)

OR

2 a. if $x=\tan (\log y)$, find the value of $\left(1+x^{2}\right) y,-, 4-1+(2 n x-1) 3 r n+(11)(n-1)$ Yn-i-
/trks)
b. Find the Pedal equation of $\frac{2 a}{r}=1+\cos B$.

Marks)
c. Find the radius of curvature of the curve r. $=$ an Ake.

Module- 2
3 a. Explain $\log (\cos x)$ about the point $x=3$ upto $3^{\text {rt }}$ degree terms using Taylor's series.
(06 Marks)
valuate\&1: $\quad t\left(\frac{\cdots}{x}\right)$
. State Euler's theorem and use it to find $x \frac{a u}{a x}+y \underset{a y}{\frac{a u}{w} h e n ~ u}=\tan -I \quad \begin{aligned} & \frac{\mathfrak{L}_{2}}{2}+ \\ & x+y\end{aligned}$
(05 Marks)

OR
4 a. Expand $\frac{e x}{1+e x}$ using Maclaurin's series upto and including $3 r^{\text {d }}$ degree terms.
(06 Marks)
b. Find ${ }_{d t}^{u}$ when $u=\begin{array}{r}x 3 y 2+x 2^{3} \\ y\end{array}$ with $^{x}=\mathbf{a t}^{2}, y=2 a t$. Use Partial derivatives. (05 Marks)

(05 Marks)

Module-3
5 a. A particle moves on the curve $x=2 t^{\text {Module-3 }} / \quad 1-\int_{4 t}, z=3 t-5$, where t is the time find the components of velocity and acceleration at time $t=1$ in the direction of $i-3 j+2 k$.
(06 Marks)
b. Find the divergence and curl of the vector $V=(x y z) i+\left(3 x^{2} y\right) j+\left(x z^{2}-y^{2} z\right) K$ at the point ($2,-1,1$).
(05 Marks)
c. A vector field is given by $A=\left(x^{2}+x y^{2}\right) i+\left(y^{2}+x^{2} y\right)$, show that the field is irrotational and find the scalar potential.

OR

6 a. Find grad (I) when if $=3 x^{2} y-y^{3} z^{2}$ at the point $(1,-2,-\mathbf{1})$.
(06 Marks)
b. Find a for which $\mathrm{f}-(\mathrm{x}+3 \mathrm{y}) \mathrm{i}+(\mathrm{y}-2 \mathrm{z}) \mathrm{j}+(\mathrm{x}+\mathrm{az}) \mathrm{k}$ is solenoidal.
(05 Marks)
c. Prove that $\operatorname{Div}($ curl $V)=0$.
(05 Marks)

Module 4

7 a. Obtain the reduction formula of ! $\sin ^{\prime} x \cos ^{n} x d x$.
(06 Marks)
b. Evaluate $\mathbf{f}^{2 \mathrm{a}} \times \mathrm{x} 2 \mathrm{ax} \mathrm{x}^{2} \mathrm{dx}$.
(05 Marks)
c. \quad Solve $(2 x \log x-x y) d y+2 y d x=0$.
(05 Marks)

OR

8 a. Obtain the reduction formula off $\cos ^{\prime} \mathrm{xdx}$.
(06 Marks)
b. Obtain the Orthogonal trajectory of the family of curves $\mathrm{r}^{\prime \prime} \cos \mathrm{n} 0=\mathrm{a} .$. Hence solve it.
(05 Marks)
c. A body originally at $80^{\circ} \mathrm{C}$ cools down at $60^{\circ} \mathrm{C}$ in 20 minutes, the temperature of the air being $40^{\circ} \mathrm{C}$. What will be the temperature of the body after 40 minutes from the original?(05 Marks)

9 a. Find the rank of the matrix

(06 Marks)

Solve by Gauss - Jordan method the system of linear equations
$2 \mathrm{x}+\mathrm{y}+\mathrm{z}=10,3 \mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=18, \mathrm{x}+4 \mathrm{y}+9 \mathrm{z}=16$.
(05 Marks)
Find the largest eigen value and the corresponding Eigen vector by power method given that
$2 \mathbf{O}^{-}$
A-0 2 O. (Use $[100\}^{\mathrm{r}}$ as the initial vector). (Apply 4 iterations). ($\mathbf{0 5}$ Marks)
102

OR

10 a. Use Gauss - Seidel method to solve the equations
(06 Marks)

$$
20 x+y-2 x=17
$$

$3 x+20 y-z=18$
$2 x-3 y+20 z=25$. Carry out 2 iterations with $x o-y o-z o--0$.
b. Reduce the matrix $\left.A=\begin{array}{ccc}{[-1} & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0\end{array} \right\rvert\,$ to the diagonal form.
(05 Marks)
c. Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$ to the canonical form.
(05 Marks)

