

, u

Е

A

Ti t . j op. 10 op. 10

·r Ts

— cd OL, 1a. § FIL

OQ.

www.FirstRanker.com

USN

15MAT21

Second Semester B.E. Degree Examination, Dec.2016/Jan.2017 **Engineering Mathematics - II**

Time: 3 hrs. Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

a. Solve $(D-2)^2 y - 8(e^2 + x + x^2)$, by inverse differential operator method. (06 Marks)

b. Solve $(D^2 - 4D + 3)$ y = $e^x \cos 2x$, by inverse differential operator method. (05 Marks)

c. Solve by the method of variation of parameters $y'' - 6y' + 9y = \frac{e^{-y}}{2}$. (05 Marks)

2 a. Solve $(D_{2}^{2} - 1)y = x \sin 3x$ by inverse differential operator method. (06 Marks)

b. Solve $(D^3 - 6D^2 + 11D - 6)y = by$ inverse differential operator method. (05 Marks)

c. Solve $(D^2 + 2D + 4)$ y = $2x^2 + 3$ e' by the method of undetermined coefficient. (05 Marks)

a. Solve $x^3y'' + 3x^2y'' + xy' + 8y = 65 \overline{\cos(\log x)}$. (06 Marks) b. Solve $xy p^2 + p(3x^2 - 2y^2) - 6xy - 0$. (05 Marks) c. Solve the equation $y^2(y - xp) = x^4 p^2$ by reducing into Clairaut's form, taking the substitution

and $y = \frac{1}{Alia} \frac{1}{140}$ (05 Marks)

4 a. Solve $(2x + 3)^2 y'' - (2x + 3) y' - 12y = 6x$. b. Solve $p^2 + 4x^5p - 12x^4y = 0$. c. Solve $p^3 - 4xy p + 8y^2 = 0$. (06 Marks)

(05 Marks)

(05 Marks)

Module-3

a. Obtain the partial differential equation by eliminating the arbitrary function.

 $\mathbf{Z} f(\overline{\mathbf{x}+\mathbf{a}}t) + g(\mathbf{x}-\mathbf{a}t).$ (06 Marks)

 $-\sin x \sin y$, for which — -2 sin y, when x = 0 and z = 0, when y is an odd

multiple of 4. (05 Marks)

Find the solution of the wave equation $\frac{(3^2)}{at^e} = e\bar{L} \frac{u}{-2}$ by the method of separation of variables. (05 Marks)

6 a. Obtain the partial differential equation by eliminating the arbitrary function

 $Cx + my + nz - 4)(x^2 + y^2 + z^2).$ (06 Marks)

z, given that, when y 0, $z = e^x$ and $\frac{az}{}$ b. Solve (05 Marks)

1 of 2

15MAT21

c. Derive one dimensional heat equation $\frac{a_u}{at} = c - \frac{52_u}{ax^2}$ (05 Marks)

Module-4

7 a. Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz.$ (06 Marks)

b. Evaluate $\mathbf{f} \cdot \mathbf{f}$ xy dy dx by changing the order of integration. (05 Marks)

c. Evaluate $x^{72}(4-x)^{512}$ dx by using Beta and Gamma function. (05 Marks)

OR

8 a. Evaluate $E_1^{t} e^{-tx'}$) dx dy by changing to polar co-ordinates. Hence show that $\mathbf{f} \mathbf{e}^t \mathbf{d} \mathbf{x} = \mathbf{M} - \mathbf{0}$ (06 Marks)

b. Find by double integration, the area lying inside the circle1z Λ d¹ Itsle the cardioid $r = a(1-\cos 0)$. (05 Marks)

c. Obtain the relation between beta and gamma function in the form

$$0_{(m, n)} = r(in)F(n)
F(n - F n)$$
(05 Marks)

Module-5

a. Find i) L $\{e^{3t} (2\cos 5t - 3\sin 50)\}$ ii) L $\{\cos at - \cos bt\}$. (06 Marks)

b. If a periodic function of period 2a is defined by

$$f(t) = \begin{cases} t & \text{if } 0._.\text{t.lca.} \\ 2a - t & \text{if a t } 2a \end{cases} \text{ then show that } L\{f(t)\} = \begin{cases} 1 \\ s \end{cases} \text{ tan h(} \frac{1}{2} \text{.} \end{cases}$$
 (05 Marks)

c. Solve the equation by Laplace transform method. y''' + 2y'' - y' - 2y = 0. Given

$$y(0) = y'(0) = 0, y''(0) = 6.$$
 (05 Marks)

OR

10 a. Find $U^{\dagger} f_{s} = \frac{s+3}{-4s+13}$. (06 Marks)

b. Find 1:1, by using Convolution theorem. (05 Marks) $1^{-2} + \mathbf{sa}^2 \mathbf{f}$

' $\sin t$, 0 < t < 71

c. Express $f(t) = \sin 2t$, $\sin 2t$, $\sin 3t$, $\tan 2t < 27c$ in terms of unit step function and hence find its

Laplace transforms. (05 Marks)