

www.FirstRanker.com

www.FirstRanker.com



17PHY12

# First Semester B.E. Degree Examination, Dec.2017/Jan.2018 **Engineering Physics**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing one full question from each module. 2. Physical constants : Velocity of light,  $c = 3 \times 10^{-8}$  rn/s Planck's constant,  $h = 6.63x \ 10^{-34} JS$ Mass of electron,  $m_e = 9.1 \times 10^{31}$  kg Charge of electron,  $e = I.6x \ 10^{49}O$ Boltzmann constant =  $1.38 \times 10^{-23} JIC^{I}$ 

#### Module-1

Avogadro number =  $6.02 \times 10^{23}$ /moi

- a. Write the assumptions of Planck's law of radiation. Deduce Wein's law and Rayleigh-Jeans 1 law from Planck's law of radiation. (07 Marks) (06 Marks)
  - Set up time independent one dimensional Schrodinger wave <sup>\*</sup> uation. b.
  - What is Compton effect? Explain its physical significance.t C.
  - An electron is bound in an one dimensional potential well of width 1 A, but if infinite wall d. height. Find its energy values in the ground state, and also in the first excited states.

(04 Marks)

(03 Marks)

(03 Marks)

#### OR

- State Heisenberg's uncertainty principle. Show t!-at electrons cannot exist inside the nucleus. a. (07 Marks) b.
  - State de Broglie hypothesis and show that group velocity is equal to particle velo city. (06 Marks)
- Briefly explain three properties of wave function. c.
- Compute the de Broglie wavelength for an electron moving with one tenth part of the d. velocity of light. (04 Marks)

#### Module\_2

- a. Explain Fermi energy and Fermi factor. Explain the variation of Fermi factor with 3 temperature. (07 Marks)
  - Derive the expression for electrical conductivity of an intrinsic semiconductor. (05 Marks) b.
  - Write a note on Meglave vehicles. с.
  - The electron concentration in a semiconductor is 5 x  $10^{11}$  m<sup>-3</sup>. Calculate the conductivity of d. the material if the drift velocity of electron is 350 ms<sup>-1</sup> in an electric field of 1000 Vm<sup>-1</sup>.

(04 Marks)

(04 Marks)

#### OR

Discuss the merits of quantum electron theory. (06 Marks) 4 a. What is superconductivity? Explain Type-I and Type-11 superconductors. (06 Marks) b. What is (i) mean collision time, (ii) drift velocity, (iii) Meissner effect? C. (04 Marks) given that its Fermi energy is 5.5 eV and the relaxation time for electrons is  $3.83 \times 0.14$  S. d.

(04 Marks)

1 of 2

#### www.FirstRanker.com

CO 0 C' 2



## 17PHY12

#### Module-3

- Define angle of acceptance and numerical aperture. Obtain an expression for the numerical 5 a. aperture of an optical fiber. (07 Marks)
  - b. What is holography? Explain the principle of construction of hologram with suitable ray diagram. (05 Marks)
  - c. Explain the processes of spontaneous emission and stimulated emission. (04 Marks)
  - d. A medium in thermal equilibrium at temperature 300 K has two energy levels with a Find the ratio of population densities of the upper and lower wavelength separation of 1 levels. (04 Marks)

#### OR

- 6 a. Describe the construction of CO, laser and explain its working with the help of energy level diagram. (06 Marks) (06 Marks)
  - b. discuss the three types of optical fibers with suitable diagrams.
  - c. Mention four applications of LASER.
  - d. The angle of acceptance of an optical fiber is 30° when kept in air. Find the angle of acceptance when it is in a medium of refractive index 1.33. (04 Marks)

#### Module<sub>-</sub>4

7 a. Explain in brief the seven crystal systems with neat diagrams.

- b. Explain the crystal structure of diamond with neat sketch and calculate its atomic packing factor. (06 Marks)
- c. Define unit cell, primitive cell and Bravias lattice. (03 Marks)
- d. Calculate the glancing angle for incidence of x-rays of wavelength 0.58 A on the plane (132) of NaC, E which results in second order diffraction maxima taking the lattice constant as

3.81A.

(04 Marks)

(04 Marks)

(07 Marks)

#### OR

- a. What are Miller indices? Derive an expression for interplanar distance interms of Miller 8 indices. (07 Marks)
  - b. Define coordination number and packing factor. Calculate the packing factor for SCC and FCC structure. (06 Marks)
  - c. Derive Bragg's law. (04 Marks)
  - d. Draw the following planes in a cubic unit cell: i) (111) iii) (0 1 1). ii) (101)(03 Marks)

#### **Module-5**

9 a. Describe the construction and working of Reddy's shock tube. (06 Marks)

- b. Discuss the variation of density of energy states for 3D, 2D, 1D and OD structures. (06 Marks)
- c. Describe soi gel method of producing nano particles. (05 Marks)
- d. Mention any three applications of nano particles. (03 Marks)

### OR

a. Describe the principle, construction and working of a scanning electron microscope. 10

(08 Marks)

- b. Define: 1) Mach number ii) Subsonic waves iii) Supersonic waves iv) Ultrasonic waves. (04 Marks)
- Explain pyrolysis method of obtaining carbon nanotubes. c.
- (04 Marks) d. The distance between the two pressure sensors in a shock tube is 100 mm. The time taken by a shock wave to travel this distance is 100 microsecond. If the velocity of sound under the same conditions is 340 ms<sup>-1</sup>, find the Mach number of the shock wave. (04 Marks)

#### www.FirstRanker.com