

First Semester B.E. Degree Examination, Dec.2017/Jan.2018 Engineering Physics

Max. Marks: 100 Time: 3 hrs.

Note: 1. Answer any FIVE full questions, choosing one full question from each module.

Physical constants: Velocity of light, c = 3 x 10⁻⁸ rn/s

Planck's constant, $h = 6.63x 10^{-34} JS$

Mass of electron, $m_e = 9.1 \times 10^{31} \text{ kg}$

Charge of electron, e = I.6x 10 490 Boltzmann constant = 1.38 x 10 -23 JIC1

Avogadro number = 6.02 x 10²³/moi

Module-1

- a. Write the assumptions of Planck's law of radiation. Deduce Wein's law and Rayleigh-Jeans law from Planck's law of radiation. (07 Marks)
 - Set up time independent one dimensional Schrodinger wave " uation. (06 Marks)
 - What is Compton effect? Explain its physical significance.t (03 Marks)
 - d. An electron is bound in an one dimensional potential well of width 1 A, but if infinite wall height. Find its energy values in the ground state, and also in the first excited states.

(04 Marks)

OR C

- State Heisenberg's uncertainty principle. Show t!-at electrons cannot exist inside the nucleus. 2 (07 Marks)
 - State de Broglie hypothesis and show that group velocity is equal to particle velo city.

(06 Marks) (03 Marks)

- Briefly explain three properties of wave function.
- Compute the de Broglie wavelength for an electron moving with one tenth part of the velocity of light. (04 Marks)

Module_2

- a. Explain Fermi energy and Fermi factor. Explain the variation of Fermi factor with temperature. (07 Marks)
 - Derive the expression for electrical conductivity of an intrinsic semiconductor. (05 Marks)
 - Write a note on Meglave vehicles. (04 Marks)
 - d. The electron concentration in a semiconductor is 5 x 10" m³. Calculate the conductivity of the material if the drift velocity of electron is 350 ms. in an electric field of 1000 Vm.

(04 Marks)

- Discuss the merits of quantum electron theory. (06 Marks)
 - b. What is superconductivity? Explain Type-I and Type-11 superconductors. (06 Marks)
 - C. What is (i) mean collision time, (ii) drift velocity, (iii) Meissner effect? (04 Marks)
 - given that its Fermi energy is 5.5 eV and the relaxation time for electrons is 3.83 x 0-1 4 S. d. Calculate the Fermi velocity and the mean path for the conduction

(04 Marks)

00

important Note: 1. On completing y 2. Any revealing of

www.FirstRanker.com

www.FirstRanker.com

17PHY12

м	od	u	le-3

- Define angle of acceptance and numerical aperture. Obtain an expression for the numerical aperture of an optical fiber. (07 Marks)
 - What is holography? Explain the principle of construction of hologram with suitable ray diagram. (05 Marks)
 - Explain the processes of spontaneous emission and stimulated emission. (04 Marks)
 - d. A medium in thermal equilibrium at temperature 300 K has two energy levels with a wavelength separation of 1 Find the ratio of population densities of the upper and lower levels. (04 Marks)

OR

- a. Describe the construction of CO, laser and explain its working with the help of energy level diagram.
 (06 Marks)
 - b. discuss the three types of optical fibers with suitable diagrams. (06 Marks)
 - c. Mention four applications of LASER.
 - d. The angle of acceptance of an optical fiber is 30° when kept in air. Find the angle of acceptance when it is in a medium of refractive index 1.33. (04 Marks)

Module_4

(07 Marks)

- 7 a. Explain in brief the seven crystal systems with neat diagrams.
 - Explain the crystal structure of diamond with neat sketch and calculate its atomic packing factor. (06 Marks)
 - c. Define unit cell, primitive cell and Bravias lattice.

(03 Marks)

(04 Marks)

d. Calculate the glancing angle for incidence of x-rays of wavelength 0.58 Å on the plane (132) of NaC,E which results in second order diffraction maxima taking the lattice constant as

3.81A . (04 Marks)

OR

- 8 a. What are Miller indices? Derive an expression for interplanar distance interms of Miller indices.
 (07 Marks)
 - Define coordination number and packing factor. Calculate the packing factor for SCC and FCC structure.
 - c. Derive Bragg's law.

(04 Marks)

- d. Draw the following planes in a cubic unit cell: i) (1 1 1) ii) (1 0 1) ii
 -) (1 0 1) iii) (0 1 1). (03 Marks)

Module-5

- 9 a. Describe the construction and working of Reddy's shock tube. (06 Marks)
 - Discuss the variation of density of energy states for 3D, 2D, 1D and OD structures. (06 Marks)
 - Describe soi gel method of producing nano particles.

(05 Marks)

Mention any three applications of nano particles.

(03 Marks)

OR

10 a. Describe the principle, construction and working of a scanning electron microscope.

(08 Marks)

- b. Define: 1) Mach number
- ii) Subsonic waves
- iii) Supersonic waves
- iv) Ultrasonic waves. (04 Marks)
- Explain pyrolysis method of obtaining carbon nanotubes.

(04 Marks)

d. The distance between the two pressure sensors in a shock tube is 100 mm. The time taken by a shock wave to travel this distance is 100 microsecond. If the velocity of sound under the same conditions is 340 ms⁻¹, find the Mach number of the shock wave. (04 Marks)

2 of 2

