Time: 3 hrs. www.FirstRanker.com 1017HY12/22 Max. Marks:100 ## First/Second Semester B.E. Degree Examination, June/July 2014 ## **Engineering Physics** | 6 F., 8. | Note: 1. Answer any FIVE full questions, choosing at least two from each part. 2. Answer all objective type questions only in OMR sheet page 5 of the answer booklet. 3. Answer to objective type questions on sheets other than OMR will not be valued. 4. Physical constants: Velocity of light, c = 3 x 10 8 m/s Planck's constant, h = 6.625x 10 -34 I.S. Charge on electron, e = 1.602 x 10 49 C Mass of electron, m = 9.1 x 10 41 kg Avagadro number, NA = 6.02 x 10 26/k mole Permittivity of vacuum, eo = 8.85 x 10 42 F/m Boltzmann constant, k = 1.38 x 10 -23 14. | | | | | | | | | |---|---|-------------------------------------|---|--|-----------------------------------|--|--|--|--| | 4 -
5 kg | | | PART | | | | | | | | 00 | | | vers for the followin | - | (04 Marks | | | | | | (5)
(6)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1 | i) | | roton, neutron and
rgest wavelength is | a - particle have the sa | me velocity, the particle | | | | | | 2 '0
= f) | | A) electron | B) proton | C) neutron | D) a - particle | | | | | | J.I | ii) T | , | for the back scatter | , | D) a particle | | | | | | 1 | , | A) <u>h</u> | By 2 | O h - | 2h | | | | | | | | moe moe | $\frac{p}{m_e}$ | 2m _o e | D) 3m _p e | | | | | | ≅-
0-2 | iii) 7 | | | nly if the wavelength of | _ | | | | | | - 1 0
2 mi | | A) above thresh | old wavelength | B) below thresh | _ | | | | | | 2 mii
14 | in) 7 | C) zero | ailed to account fo | | shold wavelength | | | | | | | 10) | spectrum is | alled to account to | i longer wavelength | of blackbody radiation | | | | | | >,∦
F 2 | | A) Wein's law | C. Ch | B) Rayleigh-Jea | n's law | | | | | | 7 | | C) Plank's law | 00 | D) Maxwell's la | ıw | | | | | | cd. | | | effect along with Eir | | (06 Marks | | | | | | g | c. Descri | be Davisson and | Germer experiment f | for confirmation of de-B | roglie hypothesis.
(07 Marks | | | | | | > 0
E 2 | d. Calcı | ulate the kinetic | energy of an elect | ron of wavelength 18 | nm $\{h = 6.63 \times 10^{-34}\}$ | | | | | | 7.9 | | 9.11 x 10 ³¹ kg). | energy or an erect | ron or wavelengur ro | (03 Marks | | | | | | 7.9
7.0
7.0 | | 27 | | | | | | | | | 2 | a. Choose the | e correct answer | rs for the followin | ıg: | (04 Marks | | | | | | | i) | From the Heiser | nberg's uncertainty i | relation, AL.A0 $\frac{1}{4rt}$, L | refers to | | | | | | s < | | A) length | | B) linear displace | | | | | | | i | | C) angular displa | | D) angular mon | | | | | | | 2 | 11) | The first excited | state energy of a par | rticle of mass m in a box | of width 'a' is given by | | | | | | 3 | | A zero | B) 8ma ² | C) 2h ²
8ma ² | D) 115.
2ma² | | | | | | | iii) | Wave function a
A) single valued | ssociated with a mate
d B) finite | erial particle is
C) continuous | D) all of these | | | | | | | iv) | , . | | rge, the uncertainty in er
C) zero | | | | | | | | | | | | | | | | | ## www.FirstRankerleeHY12/22 ' D) few millisecond | | c. | Wha
An o | excited atom has an | height and discuss the
certainty principle? In
average life time of | ne eigen values. Discuss its significance of 10 -8 seconds. Duri | rticle in one-dimensional (09 Marks) (03 Marks) ng this period, it emits a tainty in the frequency of (04 Marks) | | |-----|--|--|---|--|---|---|--| | 3 a | . Cł | noose
i) | the correct answers
The Fermi tempera | _ | : | (04 Marks) | | | | | -, | Pi) 2 E _F 3 K | 3 E _F | E _F | D) 2E | | | | | ii) | | | increases, the resistiv | itv | | | | | , | A) decreases | B) increases | | stant D) none of these | | | | | ture is proportional to | | | | | | | | The Fermi energy of a metal at absolute zero temperature is prop
(n - number of free electrons per unit volume). | | | | | | | | | | | A) n | B) n 32 | C) n ³⁹ | D) n ² | | | | | iv) | - | | electron theory follow | | | | | | | A) Maxwell-Boltzr | | B) Fermi-Dirac | | | | | b. | Evnl | C) Bose-Einstein st
ain the failures of cla | | D) none of these | e
r (06 Marks) | | | | c. | | | | | of occupation of various | | | | | | | | K on the basis of Ferr | | | | | d. | | | | | assuming that each atom | | | | | | | | | $per = 1.73 \times 10^{-8} \text{ ohm-m}.$ | | | | | At v | voight = 62.5 denoit | $v = 8.02 \text{ v } 10^{3} \text{ kg/m}$ | 3 NIA COS 1040 / | | | | | | | weight - 05.5, densit | y - 8.92 x 10 kg/III | 3 , NA = 6.02 x 10^{26} /kg | mole. (04 Marks) | | | 4 | . (| | | | ^ | | | | 4 | a. (| Choos | se the correct answe | | ^ | mole. (04 Marks) (04 Marks) | | | 4 | а. (| | se the correct answe
Copper is | ers for the following | 550 | (04 Marks) | | | 4 | а. (| Choos | se the correct answe | ers for the following | ^ | (04 Marks) | | | 4 | a. (| Choos
i)
ii) | ce the correct answer Copper is A) diamagnetic ma C) ferromagnetic n Electronic polariza | ers for the following
nterial
naterial | B) paramagnetic
D) antiferromag | (04 Marks)
c material
metic material | | | 4 | a. (| Choos
i)
ii) | ce the correct answer Copper is A) diamagnetic ma C) ferromagnetic n Electronic polariza A) increases with t | ers for the following
nterial
naterial
ntion
temperature | B) paramagnetic
D) antiferromag
B) decreases with | (04 Marks) c material metic material th temperature | | | 4 | a. (| Choos
i)
ii) | ce the correct answer Copper is A) diamagnetic ma C) ferromagnetic m Electronic polariza A) increases with to C) independent of the | ers for the following
naterial
naterial
tion
temperature
temperature | B) paramagnetic
D) antiferromag
B) decreases wit
D) none of these | (04 Marks) c material metic material th temperature | | | 4 | а. (| Choos
i)
ii) | ce the correct answer Copper is A) diamagnetic ma C) ferromagnetic m Electronic polariza A) increases with to C) independent of the | ers for the following
naterial
naterial
ation
temperature
temperature
moment per unit vol | B) paramagnetic D) antiferromag B) decreases wit D) none of these | (04 Marks) c material netic material th temperature | | | 4 | a. (| Choos
i)
ii) | ce the correct answer Copper is A) diamagnetic ma C) ferromagnetic m Electronic polariza A) increases with t C) independent of t The unit of dipole t A) coulomb/metre | ers for the following
naterial
naterial
tion
temperature
temperature
moment per unit vol | B) paramagnetic D) antiferromag B) decreases wit D) none of these ume is B) coulomb/met | (04 Marks) c material netic material th temperature | | | 4 | a. (| Choos
i)
ii) | ce the correct answer Copper is A) diamagnetic ma C) ferromagnetic m Electronic polariza A) increases with to C) independent of the | ers for the following
naterial
naterial
tion
temperature
temperature
moment per unit vol | B) paramagnetic D) antiferromag B) decreases wir D) none of these ume is B) coulomb/met D) coulomb | (04 Marks) c material netic material th temperature | | | 4 | а. (| Choos
i)
ii)
iii)
iii) | ce the correct answer Copper is A) diamagnetic material C) ferromagnetic material C) ferromagnetic material C) increases with the C) independent of the unit of dipole in A) coulomb/metre C) coulomb/metre The electric susceptions. | ers for the following sterial strion semperature temperature moment per unit volument by the probability x = | B) paramagnetic D) antiferromag B) decreases wir D) none of these ume is B) coulomb/met D) coulomb | (04 Marks) c material metic material th temperature c tre ² | | | 4 | а. (| Choos
i)
ii)
iii)
iii) | ce the correct answer Copper is A) diamagnetic ma C) ferromagnetic ma Electronic polariza A) increases with the C) independent of the unit of dipole in A) coulomb/metre C) coulomb/metre | ers for the following
naterial
naterial
tion
temperature
temperature
moment per unit vol | B) paramagnetic D) antiferromag B) decreases wir D) none of these ume is B) coulomb/met D) coulomb | (04 Marks) c material metic material th temperature c | | | 4 | a. (| ii) iii) iiii) iv) | ce the correct answer Copper is A) diamagnetic ma C) ferromagnetic ma Electronic polariza A) increases with the C) independent of the unit of dipole in A) coulomb/metre C) coulomb/metre The electric suscept A) E. EP | ers for the following sterial naterial stion semperature temperature moment per unit voluments are volu | B) paramagnetic D) antiferromag B) decreases wit D) none of these ume is B) coulomb/met D) coulomb | (04 Marks) c material metic material th temperature c tre ² E P (08 Marks) | | | 4 | b.
c. | ii) iii) iii) iii) iv) Desc | copper is A) diamagnetic ma C) ferromagnetic m Electronic polariza A) increases with t C) independent of t The unit of dipole t A) coulomb/metre C) coulomb/metre The electric suscep A) E. EP | rs for the following aterial naterial stion temperature temperature moment per unit volument by the state of | B) paramagnetic D) antiferromag B) decreases wir D) none of these ume is B) coulomb/met D) coulomb E E C) • | (04 Marks) c material metic material th temperature tre ² E P (08 Marks) (05 Marks) | | | 4 | b. | ii) iii) iii) iv) Desc | ce the correct answer Copper is A) diamagnetic ma C) ferromagnetic ma Electronic polariza A) increases with the C) independent of the unit of dipole in A) coulomb/metre C) coulomb/metre The electric susception A) E. EP Cribe the different polain hysteresis of ferromaCit crystal is subjective. | rs for the following sterial naterial stion semperature temperature moment per unit vol stibility x = B) E B E B E C C C E C C C C C C C C | B) paramagnetic D) antiferromag B) decreases wit D) none of these ume is B) coulomb/met D) coulomb E E C) n. ield of 1 KV/m and the | (04 Marks) c material metic material th temperature c tre ² E P (08 Marks) (05 Marks) e resulting polarization is | | | 4 | b.
c. | ii) iii) iii) iv) Desc | ce the correct answer Copper is A) diamagnetic ma C) ferromagnetic ma Electronic polariza A) increases with the C) independent of the unit of dipole in A) coulomb/metre C) coulomb/metre The electric susception A) E. EP Cribe the different polain hysteresis of ferromaCit crystal is subjective. | rs for the following sterial naterial stion semperature temperature moment per unit vol stibility x = B) E B E B E C C C E C C C C C C C C | B) paramagnetic D) antiferromag B) decreases wit D) none of these ume is B) coulomb/met D) coulomb E E C) n. ield of 1 KV/m and the | (04 Marks) c material metic material th temperature tre ² E P (08 Marks) (05 Marks) | | | 4 | b.
c. | ii) iii) iii) iv) Desc | ce the correct answer Copper is A) diamagnetic ma C) ferromagnetic ma Electronic polariza A) increases with the C) independent of the unit of dipole in A) coulomb/metre C) coulomb/metre The electric susception A) E. EP Cribe the different polain hysteresis of ferromaCit crystal is subjective. | rs for the following terial naterial tion temperature temperature moment per unit voluments and the following temperature temperature moment per unit voluments are temperature to the dielectric feethe dielectric constitutions. | B) paramagnetic D) antiferromag B) decreases wit D) none of these ume is B) coulomb/met D) coulomb E E C) ° n. ield of 1 KV/m and the ant of NaC9 [E0 = 8.8) | (04 Marks) c material metic material th temperature c tre ² E P (08 Marks) (05 Marks) e resulting polarization is | | | 5 | b.
c.
d. | ii) iii) iii) iv) Desc Expl If a l 4.3 x | ce the correct answer Copper is A) diamagnetic ma C) ferromagnetic ma Electronic polariza A) increases with the C) independent of the unit of dipole in A) coulomb/metre C) coulomb/metre The electric susception A) E. EP Cribe the different polain hysteresis of ferromaCit crystal is subjective. | rs for the following sterial strion semperature temperature moment per unit voluments by E larization mechanism selectrics. The ethe dielectric constant of the dielectric constant in the strict of | B) paramagnetic D) antiferromag B) decreases wit D) none of these ume is B) coulomb/met D) coulomb E E C) n. ield of 1 KV/m and the ant of NaC9 [E0 = 8.8 | (04 Marks) c material metic material th temperature c tre ² E P (08 Marks) (05 Marks) e resulting polarization is | | f4 C) a nano second B) unlimited A) a few seconds | Ш | Firs | trai | nker' | s choice | www.FirstRan | ker.com | www.FirstR | Rankelr(tdolHtY12/22 | |---|------|----------|--------|--|---|--------------|-----------------------|----------------------------------| | | | | | The ratio of Einste | in | B is | 074.3 | 97-13 | | | | | | A) &EU.' | B) 87th | c) | 8/thy =. | 87chy²
C² | | | | | | Holography reco | ords | | C | C- | | | | | | A) only amplitu | ıde | B) | only phase | | | | | | | C) both amplitu | | | neither amplitude | nor phase | | | | | | | ss in a diode laser i
ing B) forward b | | electric discharge | D) none of these | | | | b. | | | on and working of | | | (07 Marks | | | | c.
d. | | | of holography and a
alations of two ene | | | (05 Marks
sition between then | | | | | | uces light of wa
1.38 x 10 ⁻²³ PK] | | , assuming | the ambient ten | nperature as 27°C.
(04 Marks | | | 6 | a. C | Choos | e the correct ans | wers for the follow | ving: | | (04 Marks | | | | | i) | | | equal to the | critical angle at the | interface of core an | | | | | | cladding, then th
A) in the cladding | | R) | in the core | × . | | | | | | C) along the inte | ~ | | in the buffer | | | | | | ii) F | , . | change for the opt | | | core and cladding | | | | | | 1.68 and 1.56 is
A) 0.0769 | B) 0.0714 | | 1.0769 | D) 0.9286 | | | | | iii) A | | nductor in the vor | | | | | | | | | | eissner effect and a
deissner effect and | | | | | | | | | | issner effect and n | | | | | | | | | | Meissner effect and | | | | | | | 1 | iv) E | critical field | temperature, if the | e temperatur | e of superconduct | tor is increased, the | | | | | | A) increases | B) decreases | s C) | remains constant | D) independent | | | | b. | What | | <i>y</i> 1 <i>v</i> | , | | nuation takes place. | | | ١, | c. | Eval | ain tuna Land tum | e II superconducto | enc. | | (07 Marks
(05 Marks | | | | | | | | | n surrounded by a | ir. Determine the Rl | | | | | of its | core, given the | RI of the cladding | | | nce angle when the | | | | | fibre | is in water of RI | 1.33. | | | (04 Marks | | | 7 | a. C | hoos | e the correct ans | wers for the follow | ving: | | (04 Marks | | | | | i) | | agonal lattice has u | | | 000 | | | | | | A)a#b#c, a# | | , | a = b = c, a - 13 | | | | | | | | 13 = 120°, y=90 | | a = b c, cc =13 = | | | | | | ii) | _ | pts at a, ${2}$, 2c in | a simple cub | oic unit cell. The r | niller indices of the | | | | | | plane are
A) (2 1 4) | B) (2 4 I) | C | (4 2 1) | D) (1 2 4) | | | | | iii) | , , , | n number in face co | | 7 | 2)(124) | | | | | - | A) 2 | B) 6 | C) | | D) 12 | ## www.FirstRankel.@BHY12.122 | | | | | cassing of I | Pt+9/ | | | | |---|------|--|----------------|-----------------|-------------|--------------------------------------|------------|--| | | | iv) In the | e Bragg's equ | ıal | 1 | ne angle 0 is | | | | | | A) | the angle betv | veen the incide | nt beam a | nd the diffracted X-ray beam. | | | | | | B) | the angle betw | een the incide | nt beam a | nd the normal to the diffraction pla | nes | | | | | C) | the angle betw | veen the incide | nt beam a | nd the diffraction planes | | | | | | D) | none of these. | | | | | | | | b. | Define p | acking factor. | Calculate the p | packing fa | ctor for sc, bcc and fcc structures. | (07 Marks) | | | | c. | | | | | | | | | | d. | | | | | | | | | | | i) (2 0 0) |) | ii) (210) | iii) (| 3 2) | (03 Marks) | | | 8 | a. C | Choose th | e correct ansv | vers for the fo | llowing: | | (04 Marks) | | | | | | | es are made up | | | , | | | | | | graphene | | | B) mica sheet layers | | | | | | | honey comb | | | D) plastic | | | | | | ii) The state of matter around the nano-size is known as | | | | | | | | | | | solid state | | | B) liquid state | | | | | | | plasma state | | | D) mesoscopic state | | | | | | iii) The elastic behaviour of a liquid is characterized by its | | | | | | | | | | | Young's mod | | | B) Rigidity modulus | | | | | | | Bulk modulu | | | D) Poisson's ratio | | | | | | , | | es are produced | l by | | | | | | | , | electromagne | | , | B) electric tuning fork | | | | | | | piezo electric | | | D) inverse piezo electric effect | ž. | | | | b. | | | | the applica | ations of fullerences. | (08 Marks) | | | | c. | | | | | d can be detected by non-destruct | | | | | | | rasonics. | , | | | (08 Marks) | | | | | 4.7 | | | | | | |