

.14 ci **as**

First/Second Semester B.E. Degree Examination, June/July 2014

Engineering Physics

	Time: 3 hrs.			Max. Marks:100
6 it, 8.	Cha Mas Avag Pern	questions only in uestions on sheets city of light, c = 3 ack's constant, harge on electron, mandaro number, Manittivity of vacuum	OMR sheet page 5 of the sother than OMR will no $8 \times 10^{-8} \text{m/s}$ = $6.625 \times 10^{-34} \text{J. S.}$ e = $1.602 \times 10^{-49} \text{C}$	e answer booklet. It be valued.
		PART –		
00	1 a. Choose the correct answers	-		(04 Marks
<5 00 et, -13 0 ‡,	i) If an electron, proto which has the largest		- particle have the same	velocity, the particle
4 .)	A) electron	B) proton	C) neutron	D) a - particle
r	ii) The Compton shift for		d photon is	21
-	A) <u>h</u>	β) $\frac{2}{m_0 e}$	C) 2 h -	$\frac{2h}{3m_{p}e}$
 -2 -0 mi	mo ^e		2m _o e	D
-2	iii) The photoelectric effect			
- <u>U,</u> mii	A) above threshold w C) zero	vavelength	B) below threshold D) equal to thresho	
14	iv) The law which failed	d to account for		
	spectrum is	10,10	1911841 WWY GIVING WILL GI	inches and inches
2	A) Wein's law	OUL	B) Rayleigh-Jean's	law
, o.	C) Plank's law	0.0	D) Maxwell's law	
Ø 2, 6	b. Describe photoelectric effec			(06 Marks
. <u>§</u>	c. Describe Davisson and Gern	ner experiment to	r confirmation of de-Brog	ilie nypotnesis. (07 Mark s
• <u>-</u>	d. Calculate the kinetic ener	rgy of an electro	on of wavelength 18 nr	,
9	$m_e = 9.11 \times 10^{31} \text{ kg}$.			(03 Marks
,Ö	N			
; j 2	a. Choose the correct answers fo	or the following	: h	(04 Marks
9	i) From the Heisenberg	g's uncertainty re	lation, AL.A0 $\frac{11}{4rt}$, L refe	rs to
< (si	A) length		B) linear displacem	
(21	C) angular displacement	ent	D) angular momen	
	ii) The first excited state	e energy of a parti	cle of mass m in a box of	width 'a' is given by
	A zero	B) h ²	$\frac{2h^{2}}{8ma^{2}}$	$\frac{11^{\frac{2}{5}}}{5}$
				2ma ²
	iii) Wave function associ		-	D) 11 6.4
	A) single valued	B) finite	C) continuous	D) all of these
	iv) If the uncertainty in A) small	B) large	ge, the uncertainty in energy C) zero	gy 1s D) independent
	,	-,5	C, 2010	L, macpendent

www.FirstRanker198HY12/22 '

		What An exphot	at is Heisenberg's excited atom has	eru orrpal ite height and discu- uncertainty princip an average life ti- the ground state. V	iss the eigen le? Discuss in me of 10 ⁻⁸ s	values. ts significance seconds. Dur	ing this period,	(09 Marks) (03 Marks) it emits a
3 a	. Cł	•	the correct answ The Fermi temp	vers for the follow erature is given by			ar.	(04 Marks)
		ii)		$ \begin{array}{ccc} & 3 & \underline{E_F} \\ & 2 & K \end{array} $ of an electron in a r	natal increase	E _F	D) 2E	
		iii)	A) decreases The Fermi en	B) increases ergy of a metal a ree electrons per un	C at absolute a) remains cor	nstant D) none o	
		iv)	A) n The electron en A) Maxwell-Bo	B) n ³² aergies in classical altzmann statistics	Cree electron B) Fermi-Dirac	statistics	
	b. c. d.	Expl energ Calc	lain Fermi-energ gy states by electi culate the mobilit	n statistics classical free elect y and Fermi-facto on at T=0°K and T y and relaxation ti ectron for conducti	ron theory. r. Discuss th ' > 0°K on th me of electr	e basis of Fer on in copper	of occupation mi factor. assuming that	(06 Marks) each atom
4	o (-	$sity = 8.92 \times 10^{3} \text{ k}$ $system for the following state of the s$	_	6.02 x 10 ²⁶ /kg	g mole.	(04 Marks)
4	a. C	i) ii)	Copper is A) diamagnetic C) ferromagnetic Electronic polar A) increases wi C) independent	c material rization th temperature of temperature le moment per unitre	B) D t volume is B) decreases with a none of thes of the none of thes of the none of	gnetic material ith temperature e	(04 Marks)
	b. c. d.	Expl If a l	ain hysteresis of t NaCit crystal is su	polarization mecha	ric field of 1			
5	a. (Choos i)	The life time of	wers for the follow an atom on a meta	stable state is		1 D) 6	(04 Marks)
			A) a few second	ds B) unlimited	1 C) a nano secoi	na D) tew r	nillisecond

			<u>&EU.'</u>	B) 87th	a \	$87 \text{thy}^{\frac{3}{2}}$.	$87 \text{chy}^{\frac{3}{2}}$
			A) C^3	B)	C)	3 C	C^2
			Holography record	de		C	C
			A) only amplitud		B) o	nly phase	
			C) both amplitude			either amplitude	nor phase
				in a diode laser is by		ettilet umpittude	nor phase
				g B) forward bias		lectric discharge	e D) none of these
	b.	Eval	oin the construction	and working of a H	a Na lacar		(07 Marks)
	c.			holography and mer		dications	(05 Marks)
	d.						
	u.	rillu	the ratio of popula	itions of two energy	levels III a	i lasel il ule u al	sition between them
		prod	uces light of wave	elength 6493 A, a	ssuming	the ambient ter	nperature as 27°C.
		[K =	1.38 x 10 ⁻²³ PK].				(04 Marks)
6	a. C	Choose		ers for the following	_		(04 Marks)
		i)			ual to the cr	itical angle at the	e interface of core an
			cladding, then the	•			•
			A) in the cladding		B) iı	n the core	4
			C) along the interf	ace	D) i	n the buffer	
		ii) Fı	ractional index ch	ange for the optica	l fibre of re	efractive index	core and cladding
			1.68 and 1.56 is			-11-	
			A) 0.0769	B) 0.0714	C) 1	.0769	D) 0.9286
		iii) A	type II supercond	ductor in the vortex	state show		
			A) complete Mei	ssner effect and zero	electrical r	esistivity	
			B) incomplete Me	eissner effect and zer	o electrical	resistivity	
			C) complete Meis	sner effect and non-	zero electric	al resistivity	
			D) incomplete Me	eissner effect and no	n-zero elect	rical resistivity	
	1	iv) B	Below the critical to	emperature, if the to	emperature	of superconduc	tor is increased, the
•			critical field				
			A) increases	B) decreases	C) r	emains constant	D) independent
	b.	What	is attenuation? Ex	plain the various me	chanisms th	rough which atte	enuation takes place.
١,	1						(07 Marks)
	C.			II superconductors.			(05 Marks)
	d.						ir. Determine the RI
		of its	core, given the R	I of the cladding is	1.59. Also	find the accepta	ance angle when the
		fibre	is in water of RI 1.	33.			(04 Marks)
_	_	~-					
7	a. C			ers for the following	_		(04 Marks)
		i)	•	onal lattice has unit			
			A)a#b#c, a#(3			a = b = c, a - 13	
			C) $a b = c, a = 1$	$3 = 120^{\circ}, y = 90^{\circ}$	D) a	a = b c, cc = 13 =	$= 90^{\circ}, y = 120^{\circ}$
		ii)		υ			miller indices of the
				2			
			plane are	D) (2.4.I)	C) (4.0.1)	D) (1 2 4)
		:::>	A) (2 1 4)	B) (2 4 I)	, ,	4 2 1)	D) (1 2 4)
		iii)		number in face cente			D) 10
			A) 2	B) 6	C) 8	5	D) 12
					3 of 1		
					3 of 4		

www.FirstRankeleBHY12.122

ver a ciroice	www.FirstRanker.
	(for
iv) In the Duncal	C164470 Of Et•9/

iv) In the Bragg's equal he angle 0 is

- A) the angle between the incident beam and the diffracted X-ray beam.
- B) the angle between the incident beam and the normal to the diffraction planes
- C) the angle between the incident beam and the diffraction planes
- D) none of these.
- b. Define packing factor. Calculate the packing factor for sc, bcc and fcc structures. (07 Marks)
- c. Describe the construction and working of a Bragg's X-ray spectrometer.

escribe the construction and working of a Dragg's A-ray spectrometer.

- d. Draw the following planes in a cubic unit cell:
 - i) (2 0 0)
- ii) (210)
- iii) (1 3 2)

(03 Marks)

(06 Marks)

8 a. Choose the correct answers for the following:

(04 Marks)

- (i) Carbon nanotubes are made up of
 - A) graphene

B) mica sheet layers

C) honey comb

- D) plastic
- ii) The state of matter around the nano-size is known as
 - A) solid state

B) liquid state

C) plasma state

- D) mesoscopic state
- iii) The elastic behaviour of a liquid is characterized by its
 - A) Young's modulus

B) Rigidity modulus

C) Bulk modulus

- D) Poisson's ratio
- iv) Ultrasonic waves are produced by
 - A) electromagnetic induction
- B) electric tuning fork

C) piezo electric effect

- D) inverse piezo electric effect
- b. Write a note on fullerence. What are the applications of fullerences.
- (08 Marks)

c. Explain with principle, how the flaw in a solid can be detected by non-destructive method using ultrasonics.

(08 Marks)