

Roll No. Total No. of Pages: 02

Total No. of Questions: 07

B.Sc. (Computer Science) (2013 & Onwards) SEQUENCE SERIES AND CALCULUS

Subject Code: BCS-302 M.Code: 71774

Max. Marks: 60 Time: 3 Hrs.

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains SIX questions carrying TEN marks each and students have 2. to attempt ANY FOUR questions.

SECTION-A

1. Write briefly:

- a) If a sequence is divergent to ∞ , then it is bounded below but not bounded above.
- b) Prove that the sequence $\left\langle \frac{1}{n^3} \right\rangle$ is convergent.
- c) Show that the series:

Show that the series :
$$1 - \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$$
is Convergent.

State Raabe's test.

- d) State Raabe's test.
- e) Prove that the series $\sum u_n$ is divergent where $u_n = \frac{n}{n+1}$.
- State the first mean value theorem of integral calculus.
- g) State comparison test in limit form for convergence of improper integral $\int f(x) dx$.
- h) Show that $\int_{0}^{\infty} x^{6} e^{-2x} dx = \frac{45}{8}$.
- i) Express $\int_{0}^{1} x^2 (1-x^3)^{3/2} dx$ as a beta function.
- j) Compute $\int_{1}^{1} f dx$ where f(x) = |x|.

SECTION-B

2. a) Every cauchy sequence of real numbers is convergent.

b) if
$$\lim_{n \to \infty} \frac{a_n + 1}{a_n} = l$$
, where $|l| < 1$, then $\lim_{n \to \infty} a_n = 0$

- a) Test the convergence of the series $\sum \frac{n^2 1}{n^2 + 1} x^n$. 3.
 - b) if Σu_n is convergent, show that $\sum \frac{u_n}{1-u_n} (u_n > 0, u_n \neq 1)$ is also convergent.
- 4. a) Show that the series:

$$\frac{1}{\log 2} - \frac{1}{\log 3} - \frac{1}{\log 4} - \frac{1}{\log 5} - \frac{1}{\log 5}$$
 is conditionally convergent.

- b) State and prove cauchy's general principle of convergence.
- a) Prove that if a function is monotonic on [a, b], then show then it is Riemann 5. integrable on [a, b].
- b) If 0 < x < 1, then show that $\frac{x}{1-x} > \log(1-x)^{-1} > x$.

 a) Check for convergence the improper integral $\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$ where m, n are real 6. numbers.
 - b) State and prove cauchy's test for convergence of $\int_{a}^{b} f(x) dx$ at a.
- a) Show that :

$$\beta(m,n) = \int_{0}^{1} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx; m > 0, n > 0.$$

b) Show that $\Gamma(\frac{1}{2}) = \sqrt{\Pi}$.

NOTE: Disclosure of identity by writing mobile number or making passing request on any page of Answer sheet will lead to UMC case against the Student.

2 | M - 71774 (S3) - 1745