

Roll No.						Total No. of Pages	:: 02
							, . .

Total No. of Questions: 07

B.Sc.(Computer Science) (2013 & Onwards) (Sem.-4)

NUMBER THEORY

Subject Code: BCS-401 M.Code: 72317

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

- 1. Answer the followings in short:
 - (a) Find G.C.D. of (49,210,350).
 - (b) Show that *n* is odd iff $n \equiv 1 \pmod{2}$.
 - (c) Give an example to show that if $ab \equiv 0 \pmod{m}$, then $a \not\equiv 0 \pmod{m}$ and $b \not\equiv 0 \pmod{m}$
 - (d) Solve the linear congruence $9x \equiv 21 \pmod{30}$.
 - (e) State Euclidean algorithm.
 - (f) State Euler's theorem.
 - (g) State Wilson's theorem.
 - h) Define Euler phi function.
 - (i) Calculate the value of φ (360).
 - (j) For n > 2, $\varphi(n)$ is an even integer.

1 M- 72317 (S3)-213

SECTION-B

- 2. Prove that the numbers of primes are infinite.
- 3. Find values of x and y to satisfy 71x 50y = 1.
- 4. State and prove Fundamental theorem of Arithmetic.
- 5. State and prove Chinese remainder theorem.
- 6. State and prove Mobius inversion formula.
- 7. State and prove Fermat's theorem.

MMM.FirstPanker.com

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-72317 (S3)-213