www.FirstRanker.com

www.FirstRanker.com

Roll No. Total No. of Pages: 02

Total No. of Questions: 07

B.Sc. (CS) (2013 & Onwards) (Sem.-5) FUNDAMENTALS OF DYNAMICS

Subject Code: BCS-502 M.Code: 72575

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

1. Answer briefly:

- (a) A stone is thrown vertically and then it returns to the thrower. Is it a projectile? Explain.
- (b) Vehicles stop on applying brakes. Does this phenomenon violate the principle of conservation of momentum?
- (c) The amplitude of simple harmonic oscillator is doubled. How does this affect the maximum velocity and total energy?
- (d) What is conservative force?
- (e) Sound is produced at a time in two exactly identical strings, one of rubber and other of steel. In which string will the sound reach the other end earlier and why?
- (f) Distinguish between centre of mass and reduced mass.
- (g) What do you mean by angular impulse?
- (h) What is meant by power and energy? Give their units.
- (i) What is the difference between linear momentum and angular momentum?
- (j) How does banking of roads reduce wear and tear of the tyres?

SECTION-B

- 2. Find (i) the path of projectile (ii) time of flight (iii) horizontal range (iv) maximum height, when projectile is projected with velocity 'v' making an angle θ with the vertical direction.
- 3. What is a uniform circular motion? Explain the terms: time period, frequency and angular velocity. Establish the relation between them.
- 4. Explain the relation in phase between displacement, velocity and acceleration in simple harmonic motion, graphically as well as theoretically.
- 5. Derive an expression for gravitational potential energy of a body.
- 6. Discuss elastic collision in one dimension. Obtain expressions for velocities of the two bodies after such a collision.
- 7. State and prove Kepler's laws of planetary motion using the concept of reduced mass.

www.FirstRanker.com

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M - 72575 (S3)-164