

www.FirstRanker.com 1 of 2

(04 Marks)

18PHY12/22

OR

- a. Derive the expression for displacement current. Mention 4 Maxwell's equations in differential form for time varying fields. (08 Marks)
 - b. Derive an expression for numerical aperture in an optical fiber and stain the condition for propagation. (08 Marks)
 - c. Find the attenuation in an optical fiber of length 500m When a light signal of power 100mw emerges out of the fiber with a power 90mw. (04 Marks)

Module-4

- 7 a. State and explain Heisenberg's Uncertainty Principle. Show that the electron cannot exist inside the nucleus. (08 Marks)
 - b. Define spontaneous emission and stimulated emission. Explain the construction and working semiconductor Laser. (08 Marks)
 - c. A partied of mass 0.5mev/C^2 has kinetic energy 100eV. Find its de Broglie wavelength, where C is the velocity of light. (04 Marks)

OR

- 8 a. Assuming the time independent SchrOdinger wave equation, discuss the solution for a particle in one dimensional potential well of infinite height. Hence obtain the normalized wave function.
 (08 Marks)
 - b. Derive the expression for energy density interms Eienstein's co-efficient. (08 Marks)
 - c. The ratio of population of two energy levels is 1.059 x 10'°. Find the wavelength of light emitted by spontaneous emissions at 330K. (04 Marks)

Module-5

- 9 a. Give the assumptions of quantum free electron theory. Discuss two success of quantum free electron theory. (08 Marks)
 - ^{b.} What are polar and non-polar dielectrics? Explain types of polarization. (08 Marks)
 - C. Calculate the probability of an electron occupying an energy level 0.02ev above the Fermi level at 200K and 400K in a material. (04 Marks)

OR

- 10 a. Define internal field. Mention the expressions for internal field, for one dimension, for thre dimensional, and Lorentz field for dialectics. Derive Clausius Morsotti equation. (08 Marks)
 - b. Describe Fermi level in an intrinsic semi conductor and hence obtain the expression for Fermi energy in terms of energy gap of intrinsic semiconductor. (08 Marks)
 - c. An elemental solid dielectric material has polarizability 7×10^{-40} Fm². Assuming the internal field to be Lorentz field, calculate the dielectric constant for the material if the material has 3×10^{28} atoms/m³. (04 Marks)