LIBRARY
 c H1KOD
 First Semester B.E. Degree Examination, Dec.201klae. 2020 Calculus and Linear Algebra

8MAT11

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

$1{ }^{\text {a. }}$ With usual notations prove that $\tan \mathrm{c}=\mathrm{r} \frac{\mathrm{de}}{\mathrm{dr}}$
(06 Marks)
h. Find the angle between the curves $r=\operatorname{sine}+\cos ()$ and $r=2 \sin ^{\circ}$
(06 Marks)
c. Show that the radius of curvature for the catenary of uniform strength

$$
y=a \log \sec \frac{x}{a} \text { is } a \sec (x / a) .
$$

(08 Marks)

OR

2 a. Show that the pairs of curves $r=a(1+\operatorname{cost}))$ and $r=b(1-\cos 0)$ intersect each other Orthogonally.
b. Find the pedal equation of the curve $\mathrm{r}^{\mathrm{n}}=\mathrm{a}$ " \cos ne.
c. Show that the evolute of $y^{2}=4 a x$ is $27 a y^{2}=4(x+a)^{3}$.

Module-2

3 a. Find the Macluarin's series for $\tan x$ upto the term x^{4}.
(06 Marks)
b. Evaluate $\lim _{\mathrm{X}}\left|\frac{\mathrm{a}^{\prime}+\mathrm{bx}+\mathrm{c}^{\prime}}{3}\right|$
(07 Marks)
c. If $=f(x-y, y-z, z-x)$, prove that $-{ }_{-}^{i 7} u_{+} a u+\frac{a u}{\underline{\underline{u}}} \mathbf{O}$
(07 Marks)

OR

4 a. Expand $\log (\sec x)$ upto the term containing x^{4} using Maclaurin's series.
(06 Marks)
b. Find the extreme values of the function $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$.

Find $\underset{0(x,, y, z)}{i(11, v, w)}$ where $u=x^{2}+y^{2}+z^{2}, v=x y+y z+z x, w=x+y+z$.

Module-3

5 a. Evaluate $\int_{0}^{\mathrm{N} 1-\mathrm{x}} \mathrm{J}_{0}^{1 / 1-\mathrm{x}} \mathrm{f}_{0}^{\mathrm{a}} \mathrm{xyz}$ dzdydx
(06 Marks)
b. Evaluate $\mathrm{F}^{\prime}(2-x)$ dydx by changing the order of integration.
(07 Marks)
-20
c. Prove that $13(\mathrm{~m}, \mathrm{n})=\underline{\overline{(\mathrm{m})}} .(\mathrm{n})$

OR

6 a. Evaluate $f f$ ydx dy over the region bounded by the flrst quadrant of the ellipse $x_{a^{-}}^{\prime}-f_{b^{-}}^{\prime}=1$. (06 Marks)
b. Find by double integration the area enclosed by the curve $r=a(1+\operatorname{CosO})$ between $0=0$ and $0=1 \mathrm{t}$.
(07 Marks)

(07 Marks)

Module-4

7 a. Solve $\frac{d y}{d x} \frac{y \cos x+\sin y+y}{\sin x+x \cos y+x}=0$
(06 Marks)
b. Solve $\mathrm{rSinO}-\operatorname{Cos}() \frac{\mathrm{dr}}{\mathrm{dO}}=\mathrm{r}^{\prime}$ (07 Marks)
C. A series circuit with resistance R, inductance L and electromotive force E is governed by the differential equation $\mathrm{L} \underset{\mathrm{dt}}{\mathrm{di}}+\mathrm{RiI}=\mathrm{E}$, where L and R are constants and initially the current is zero. Find the current at any time t.
(07 Marks)
OR
8 a. Solve $\left(4 x y+3 y^{2}-x\right) d x+x(x+2 y) d y=0$.
(06 Marks)
b. Find the orthogonal trajectories of the family of parabolas $y^{1}=4 \mathrm{ax}$.
c. Solve $p^{\prime \prime}+2 p y \cot x=y^{-}$.

9 a. Find the rank of $\left|\begin{array}{llll}1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5\end{array}\right|$ by elementary row transformations.
(06 Marks)
b. Apply Gauss-Jordan method to solve the system of equations
$2 x_{1}+x_{2}+3 x_{3}=1$,
$4 \mathrm{x},+4 \mathrm{x}_{2}+7 \mathrm{X} 3=1$,
$2 \mathrm{x}]+5 \mathrm{x} 2+9 \mathrm{X} 3=3$.
(07 Marks)
c. Find the largest Eigen value and the corresponding Eigen vector of the matrix $A=\left|\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right|$ by power method. Using initial vector $(\mathbf{1 0 0})^{T}$.
(07 Marks)

R
10 a. Solve by Gauss elimination method
$x 2 y+3 z--2$,
$3 x y+4 z---4$,
$2 x-5 y-2 z=5$
(06 Marks)
b. Solve the system of equations by Gauss-Seidal method
$20 x+y-2 z 17$,
$3 x+20 y-z-18$,
$2 x 3 y+20 z 25$
(07 Marks)

c. Reduce the matrix $A=$| -1 | 3 | to the diagonal form. | |
| :--- | :--- | :--- | :--- |
| | | 4 | to |

