CDMO SGIEME

USN \square 17MAT11

First Semester B.F. Degree Examination, Dec.2019/Jan. 2020 Engineering Mathematics - I

Time: 3 hrs.
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-I

I a. Find the $\mathrm{n}^{\text {th }}$ derivative of $\sin 2 \mathrm{x} \operatorname{Cos} \mathrm{X}$.
(06 Marks)
b. Prove that the following curves cuts orthogonally $r=a(1+\sin 0)$ and $r=a(1-\sin 0)$.
(07 Marks)
c. Find the radius of the curvature of the curve $\mathrm{r}=\mathrm{a} \sin \mathrm{nO}$ at the pole.
(07 Marks)
OR
2 a. If, $\tan \mathrm{y}=\mathrm{x}$, prove that $\left(1+\mathrm{x}^{2}\right.$
$+2(\mathrm{n}+1) \mathrm{xy}_{\mathrm{n}+1}+\mathrm{n}(\mathrm{n}+1) \mathrm{y}_{\mathrm{t}}=0$.
(06 Marks)
b. With usual notations, prove that $\tan (I)=\begin{gathered}\text { WO } \\ d r\end{gathered}$
(07 Marks)
c. Find the radius of curvature for the curve $n-y=a\left(x^{2}+y^{2}\right)$ at $(-2 a, 2 a)$.
(07 Marks)

Module-2

3 a. Using Maclaurin's series prove that $\mathrm{VI}+\sin 2 \mathrm{x}=+\mathrm{x}-\mathrm{x}-\frac{+--+\ldots}{24}$
(06 Marks)
b. If $U=\cot ^{-} \left\lvert\, \begin{gathered}x+y \\ A x+3)\end{gathered}\right.$, prove that $\frac{e l i}{(x .}+y_{y}{ }_{a_{y}}=-\frac{1}{4} \sin 2 \mathbf{U}$.
(07 Marks)
c. Find the Jacobian of $u=x^{2}+y^{-}+z^{-}, v=x y+y z+z x, w=x+y+z$.
(07 Marks)

OR

4 a. Evaluate lirn $\tan x$

- x
(06 Marks)
b. Find the Taylor's sense of $\log (\cos \mathrm{x})$ about the point $\mathrm{x}=\stackrel{\mathrm{jr}}{ }$ upto the third degree.
c. If $u=\left.f\right|_{y z_{x}} ^{\left(x y^{z}\right.} \mid$ prove that $x \frac{c u}{a x}+y \frac{y^{2}}{a y}+z-\frac{\mathrm{Ou}}{\mathrm{O}}=$.
(07 Marks)
(07 Marks)

Module-3

5 a. If $\mathrm{x}=\mathrm{t}^{2}+1, \mathrm{y}=4 \mathrm{t}-3, \mathrm{z}=2 \mathrm{t}^{2} 6 \mathrm{t}$ represents the parametric equation of a curve then, find velocity and acceleration at $\mathrm{t}=1$.
(06 Marks)
b. Find the constants a and b such that $F=\left(a x y+z^{3}\right) i+\left(3 x^{2}-z\right) j+\left(b x z^{2}-y\right) k$ is irrotational. Also find a scalar function ${ }_{4}$ such that $\mathrm{F}=\mathrm{V} 4$.

OR

6 a. Find the component of velocity and acceleration for the curve $\left.r=2 t-i+t^{2}-4 t\right) j+(3 t-5) k$ at the points $t=1$ in the direction of $\mathrm{i}-3 \mathrm{j}+2 \mathrm{k}$.
(06 Marks)
b. If $t=V\left(x y^{3} z^{2}\right)$, find div t and curl t at the point $(1,-I, \mathbf{1})$.
(07 Marks)
c. Prove that curl $(\operatorname{grad} 4))=\mathbf{0}$.

Module-4

7 a. Prove that $\int_{0}^{-}-\frac{x^{2}}{-x} d x=3 m$ using reduction formula.
(06 Marks)
b. Solve $\left(x^{2}+y+x\right) d x+x y d y=0$.
(07 Marks)
c. Find the orthogonal trajectory of $\mathrm{rn}=\mathrm{a} \sin \mathrm{nO}$.
(07 Marks)

OR

8 a. Find the reduction formula for icosn xdy and hence evaluate \cos " $x d x$
(06 Marks.
b. Solve ye" $d x+\left(w^{\prime \prime}+2 y\right) d y=0$.
(07 Marks)
c. A body in air at $25^{\circ} \mathrm{C}$ cools from $100^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ in 1 minute. Find the temperature of the body at the end of 3 minutes.
(07 Marks)
9 a. Find the rank of the matrix $\mathrm{A}=\left|\begin{array}{cccc}2 & \frac{\text { Module-5 }}{-1} & -\mathbf{3} & -\mathbf{1} \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1\end{array}\right|$ by reducing to row echelon form.
b. Find the largest eigen and the corresponding eigen vector for $\left|\begin{array}{ccc}4 & 1 & \mathbf{- 1} \\ 2 & 3 & -\mathbf{1} \\ -2 & 1 & 5\end{array}\right|$ by taking the (06 Marks) initial approximation as $\left[1,0.8,-0.81^{1-}\right.$ by using power method. Carry out four iterations.
(07 Marks)
c. Show that the transformation $\mathrm{y}_{\mid}=2 \mathrm{x}_{1}-2 \mathrm{x}_{2}-\mathrm{x} . \mathrm{y},=-4 \mathrm{x}_{1}+5 \mathrm{x},+3 \mathrm{x}, \mathrm{y}_{1}=\mathrm{x},-\mathrm{x},-\mathrm{x}_{3}$ is regular. Find the inverse transformation.
(07 Marks)

OR

10 a. Solve the equations $5 x+2 y+z=12, x+4 y+2 z=15, x+2 y+5 z=20$ by using Gauss Seidal method. Carryout three iterations taking the initial approximation to the solution as $(1,0,3)$.
(06 Marks)
b. Diagonalize the matrix $\mathrm{A}=\left|\begin{array}{l}3^{-} \\ 4\end{array}\right|$
(07 Marks)
c. Reduce the quadratic form $8 x^{2}+7 y^{2}+3 z^{2}-12 x y+4 x z-8 y z$ into canonical form by orthogonal transformation.
(07 Marks)

