

www.FirstRanker.com

www.FirstRanker.com

17MAT11 USN

First Semester B.F. Degree Examination, Dec.2019/Jan.2020 Engineering Mathematics — I

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-I

a. Find the nth derivative of sin 2x Cos X. (06 Marks)

b. Prove that the following curves cuts orthogonally r = a(1+ sin 0) and r = a(1— sin 0).

(07 Marks)

Find the radius of the curvature of the curve r = a sin nO at the pole.

(07 Marks)

a. If, $\tan y = x$, prove that $(1 + x^2 + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$. (06 Marks)

 b. With usual notations, prove that tan(I) = WO. (07 Marks)

c. Find the radius of curvature for the curve $n^{-}y = a(x^{2} + y^{2})$ at (-2a, 2a). (07 Marks)

Module-2

3 a. Using Maclaurin's series prove that $VI + \sin 2x = +x$ _ $x - + -x + \dots$ (06 Marks)

b. If
$$U = \cot^{-1} \left(\frac{x + y}{Ax + 3} \right)$$
, prove that $x = \frac{eli}{(x)} + y = \frac{i11}{a_y} = -\frac{1}{4} \sin 2U$. (07 Marks)

c. Find the Jacobian of $u = x^2 + y^2 + z^2$, v = xy + yz + zx, w = x + y + z. (07 Marks)

a. Evaluate lirn tank (06 Marks)

b. Find the Taylor's sense of log(cos x) about the point x = _jr upto the third degree.

(07 Marks)

c. If
$$u = f \begin{vmatrix} (x \ y \ z \ y \ z \ x \ |$$
 prove that $x \frac{cu}{ax} + y \frac{+z \cdot Ou}{Oz} = .$ (07 Marks)

Module-3

a. If $x = t^2 + 1$, y = 4t - 3, $z = 2t^2$ 6t represents the parametric equation of a curve then, find velocity and acceleration at t = 1.

b. Find the constants a and b such that $F = (axy + z^3)i + (3x^2 - z)j + (bxz^2 - y)k$ is irrotational.

Also find a scalar function $_4$ such that F = V4.

(07 Marks) (07 Marks)

Prove that div(curl A) = 0.

www.FirstRanker.com

www.FirstRanker.com

17MAT11

(06 Marks)

OR

- 6 a. Find the component of velocity and acceleration for the curve r = 2t ⁻i + t² 4t)j+(3t -5)k at the points t = 1 in the direction of i -3 j+ 2k.
 (06 Marks)
 - b. If $t = V(xy^3z^2)$, find div t and curl t at the point (1, -I, 1). (07 Marks)
 - c. Prove that curl(grad 4)) = 0. (07 Marks)

Module-4

- 7 a. Prove that -___ dx = 3m using reduction formula. (06 Marks)
 - b. Solve $(x^2 + y + x)dx + xydy = 0$. (07 Marks)
 - c. Find the orthogonal trajectory of m = a sin nO.
 (07 Marks)

OR

- 8 a. Find the reduction formula for icosn xdy and hence evaluate cos" xdx (06 Marks.
 - b. Solve ye" dx + (w'' + 2y)dy = 0. (07 Marks)
 - A body in air at 25°C cools from 100°C to 75°C in 1 minute. Find the temperature of the body at the end of 3 minutes.
- 9 a. Find the rank of the matrix $A = \begin{bmatrix} 2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ by reducing to row echelon form.
 - b. Find the largest eigen and the corresponding eigen vector for $\begin{vmatrix} 4 & 1 1 \\ 2 & 3 1 \\ -2 & 1 & 5 \end{vmatrix}$ by taking the

initial approximation as [1, 0.8, -0.81] by using power method. Carry out four iterations.

c. Show that the transformation $y_1 = 2x_1 - 2x_2 - x$. $y_2 = -4x_1 + 5x_2 + 3x_3$, $y_3 = x_3 - x_3 - x_3$ is regular. Find the inverse transformation. (07 Marks)

OR

- 10 a. Solve the equations 5x + 2y + z = 12, x + 4y + 2z = 15, x + 2y + 5z = 20 by using Gauss Seidal method. Carryout three iterations taking the initial approximation to the solution as (1, 0, 3).
 (06 Marks)
 - b. Diagonalize the matrix $A = \begin{bmatrix} 3^{-} \\ 4 \end{bmatrix}$ (07 Marks)
 - c. Reduce the quadratic form 8x² + 7y² +3z² -12xy + 4xz -8yz into canonical form by orthogonal transformation. (07 Marks)

