

www.FirstRanker.com

First Semester B.F. Degree Examination, Dec.2019/Jan.2020 **Engineering Mathematics — I**

Time: 3 hrs.

USN

Ι

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-I a. Find the nth derivative of sin 2x Cos X.

- Prove that the following curves cuts orthogonally $r = a(1 + \sin 0)$ and $r = a(1 \sin 0)$. b. (07 Marks) Find the radius of the curvature of the curve $r = a \sin nO$ at the pole. с. (07 Marks) OR If, $\tan y = x$, prove that $(1 + x^2)$ a. $+ 2(n+1)xy_{i+1} + n(n+1)y_{i} = 0$. (06 Marks)
 - 'WO With usual notations, prove that tan(I) =b. (07 Marks)
 - Find the radius of curvature for the curve $n^{-}y = a(x^{2} + y^{2})$ at (-2a, 2a). (07 Marks) c.

Module-2

a. Using Maclaurin's series prove that $VI + \sin 2x = +x$ ______ $x - + - - + \dots$ 3 (06 Marks)

- b. If $\mathbf{U} = \cot^{-1} \left| \frac{\mathbf{x} + \mathbf{y}}{A\mathbf{x} + \mathbf{z}} \right|$, prove that $\mathbf{x} \frac{\mathbf{eli}}{\mathbf{x}} + \mathbf{y} \frac{\mathbf{ill}}{\mathbf{ay}} = -\frac{1}{4} \sin 2\mathbf{U}$. (07 Marks)
- c. Find the Jacobian of $u = x^2 + y^2 + z^2$, v = xy + yz + zx, w = x + y + z. (07 Marks)

OR

- tanxr a. Evaluate lirn 4
 - b. Find the Taylor's sense of $\log(\cos x)$ about the point $x = -\frac{jr}{r}$ up to the third degree.

(07 Marks)

(06 Marks)

c. If
$$\mathbf{u} = \mathbf{f} \begin{vmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \\ \mathbf{y} & \mathbf{z} & \mathbf{x} \end{vmatrix}$$
 prove that $\mathbf{x} \frac{\mathbf{cu}}{\mathbf{ax}} + \mathbf{y} \frac{\mathbf{cu}}{\mathbf{ay}} + \mathbf{z} \frac{\mathbf{O}\mathbf{u}}{\mathbf{O}\mathbf{z}} = .$ (07 Marks)

Module-3

a. If $x = t^2 + 1$, y = 4t - 3, $z = 2t^2$ 6t represents the parametric equation of a curve then, find 5 velocity and acceleration at t = 1. (06 Marks) b. Find the constants a and b such that $F = (axy + z^3)i + (3x^2 - z)j + (bxz^2 - y)k$ is irrotational. Also find a scalar function $_{4}$ such that F = V4. (07 Marks)

Prove that div(curl A) = 0. С.

2

FirstRanker.com

17MAT11

(06 Marks)

Max. Marks: 100

(07 Marks)

www.FirstRanker.com

www.FirstRanker.com

17MAT11

(07 Marks)

OR

6	a. F	Find the component of velocity and acceleration for the curve $r = 2t^{-i} + t^{2} - 4t$	+(3t - 5)k
		at the points $t = 1$ in the direction of $i - 3j + 2k$.	(06 Marks)
	b.	If $t = V(xy^3z^2)$, find div t and curl t at the point (1, -I, 1).	(07 Marks)

Prove that $\operatorname{curl}(\operatorname{grad} 4)) = 0$. c.

Module-4

7	a. F	Prove that	$- \underline{\qquad} dx = 3m$ using reduction formula. - x	(06 Marks)
	b.	Solve $(x^2 + y - x^2)$	(+ x)dx + xydy = 0.	(07 Marks)
	c.	Find the orthog	conal trajectory of $rn = a \sin nO$.	(07 Marks)

OR

- a. Find the reduction formula for icosn xdy and hence evaluate cos" xdx 8 (06 Marks.
 - b. Solve ye'' dx + (w'' + 2y)dy = 0. (07 Marks)
 - c. A body in air at 25°C cools from 100°C to 75°C in 1 minute. Find the temperature of the body at the end of 3 minutes. (07 Marks)
- 9 a. Find the rank of the matrix A =

(06 Marks)

by reducing to row echelon form.

b. Find the largest eigen and the corresponding eigen vector for **by** taking the

initial approximation as [1, 0.8, -0.81¹⁻ by using power method. Carry out four iterations. (07 Marks)

c. Show that the transformation $y_1 = 2x_1 - 2x_2 - x$. $y_2 = -4x_1 + 5x_2 + 3x_3$, $y_1 = x_2 - x_2 - x_3 - x_$ is regular. Find the inverse transformation. (07 Marks)

OR

- a. Solve the equations 5x + 2y + z = 12, x + 4y + 2z = 15, x + 2y + 5z = 20 by using Gauss 10 Seidal method. Carryout three iterations taking the initial approximation to the solution as (1, 0, 3).(06 Marks)
 - Diagonalize the matrix A =b. (07 Marks)
 - c. Reduce the quadratic form $8x^2 + 7y^2 + 3z^2 12xy + 4xz 8yz$ into canonical form by orthogonal transformation. (07 Marks)

www.FirstRanker.com