FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

LIBRARY

	USN												CHI	KOD1	15CV33	
		Thi	rd Se	eme	ster	B.E	. Do Fl	egr uic	ee Ex I Me	ami cha	natio anic	on, Do S	ec.	an.	2020	
	Time: 3 hrs.												Max	Max. Marks: 80		
		Note:	Answe	er Fl	IVE fi	ull que	estio	ons, e	choosir	ng ON	VE full	questi	on fron	n each ma	odule.	
1:3 7t	Ι	Module-1.a. Define the following terms. Mention their units and dimensiOns.•(i) Mass density (ii) Weight density(iii) Specific Volume(iv) Specific grav														
$\begin{array}{c} t_{C4.7.} \\ c_{C4.7.} \end{array}$	center	b. A U in a p of the pip the c absol	tube m pipe lin pe is 1 lifferen lute pre	anoi e. It 00 i nce c essur	meter s left mm l ofmer e of c	is use end is below cury bil in th	ed to con the leve he pi) me inect e lev ls in ipe.	asure t ed to t vel of the rig	he pro ne pip merc ght lin	essure be and cury (S mb an	:of oil right l Sp.Gr d left l	of speci imb is c = 13.6 imb is	fic gravit open to att). In the 160 mm,	y 0.85 flowing mosphere. The right limb. If determine the (08 Marks)	
									0	R						
o	2	 2 a. State and prove Pascal's law. (08 Ma b. A 400 mm shaft is rotating at 200 rpm in a bearing of length 100 mm. If the thickness of oil film is 1.4 mm and the dynamic viscosity of the oil is 0.7 N-S/nit Determine (i) Torque required to overcome friction in bearing. (ii) Power utilized in overcoming viscous resistance 											(08 Marks) hickness of the ne			
		Assu	ime a li	near	velo	city pr	ofile	<u>.</u> 22	Mod	ule-2					(08 Marks)	
€, 8,2 ₫) 2 ² 6	3	a. Derive cente b. If for Dete the p	e an ex er of pro a two ermine. point P	pres essur dime the	sion : re lies ensio veloci	for to lower onal po ity at t	tal p thar oten the p	ress n its ntial point	ure on Centro flow, P(4, 5)	one s id. the v). Det	side of elocit ermine	f an in y pote e also t	ntial is he value	blane and given by e of streau	show that the (08 Marks) $y 4 \equiv x(2y = 1)$ m function tf av (08 Marks)	
· a									0	R						
0 0 t 71	 4 a. Obtain an expression for continuity equation in three dimensional form. (08 Ma b. A vertical Gate closes a horizontal tunnel 5 in high and 3 m wide running full with wa The pressure at the .bottom of the gate is 196.20 kN/m⁻. Determine the total pressure on gate and position of the centre of pressure. (08 Ma) 												(08 Marks) full with water. pressure on the (08 Marks)			
с: С									<u>Mod</u>	ule-3						
	 a. Obtain Euler's equation of motion along a stream tube and hence derive equation. List out the assumptions made. b. A horizontal venutrimeter with inlet diameter of 25 cm and throat diameter of to measure. The flow of water. The pressure at the throat is 30 cm of mercur that at the inlet is200 KN/m² (gauge). Find the discharge of water through Cd = 0.98. 												ve Bernoulli's (08 Marks) f 15 cm is used y (vaccum) and the meter. Take (08 Marks)			
						ww	/w.F	irst	Ranke	er.co	m					

www.FirstRanker.com

OR

- 6 a. Derive the equation for the discharge through venturimeter. List out the assumptions m, (08 Man
 - b A 306 mm diameter pipe carries water under a head of 20 m, with a velocity of 3.5 m/s. i the axis of the pipe turns through 45°, find the magnitude and direction of the resultant force at the bend.

Module-4

- 7 a. Define various hydraulic coefficients of an orifice and derive the relation for discharge through an orifice. (08 Marks)
 - b. A rectangular notch 40 cm long is used for measuring a discharge of 30 1ps. An error cf 1.5 mm was made while measuring the head over the notch. Calculate the percent error in the discharge $C_d = 0.6$ (08 Marks)

OR

- 8 a. Derive an expression for discharge over a triangular notch.
 - b. A rectangular orifice 1.5 m wide and 1.0 m deep is discharging water form a tank. if the water level in the tank is 3 m above the top edge of the orifice, find the discharge througN.—the orifice. Take Cd = 0.6 (08 Marks)

Module-5

9 a. Derive the Darcy-Weisbach equation for head loss due to friction in a pipe. (08 Marks)
b. A compound piping system consists of 1800 m of 0.5 m, 1200 m of 0.4 m and 600 m of

- 0.3 m new cast iron pipes connected in series. Convert the system to,
 - (i) An equivalent length of 0.4 m pipe.
 - (ii) Equivalent size pipe 3600 m long.

OR

- 10 a. Water is flowing in a pipe of 150 mm diameter with a velocity of 2.5 m/s. When it is suddenly brought to rest by closing the valve. Find the pressure rise assuming the pipe is elastic, given $E = 200 \text{ GN/m}^2$, Poisson's ratio 0.25 and K for water = 2 GN/m², pipe wall is 5 mm thick. (08 Marks)
 - b. Write short notes on: (i) Minor losses in pipe flow (ii) Hardy cross method (iii) Water hammer in pipes.

(08 Marks

(08 Marks)

(08 Marks)