USN

 LIBRARY CHIKODI
 Fourth Semester B.E. Degree Examination, Dec.

 Applied Hydraulics

 Applied Hydraulics
 Man. 2020

Time: 3 hrs .
Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
 2. Missing data may be suitably assumed.

Module-1

1 a. Explain dimensional homogeneity with examples.
(05 Marks)
b. State Buckingham's n-theorem and also describe Buckingham's Tr-theorem.
(05 Marks)
c. Find the expression for the power P , developed by a pump when P depends upon the head H , the discharge Q and specific weight ' W ' of the fluid.
(06 Marks)

OR

2 a. What are the types of similarities to be established for complete similarity to exist between the model and its prototype?
(06 Marks)
b. A 1:64 model is constructed of an open channel in concrete which has Manning's $\mathrm{N}=0.014$.

Find the value of N for the model.
(05 Marks)
c. Explain the term: Buoyancy, force and centrê of Buoyancy and meta centre. (05 Marks)

Module 2

3 a. Discuss the various types of flow through channels.
(05 Marks)
b. Derive Manning's equation for flow through open channel.
(05 Marks)
c. An earthen channel with a base width 2 m and side slope 1 horizontal to 2 vertical carries water with a depth of 1 m . The bed slope is I in 625 . Calculate the discharge if mannings roughness is 0.03 . Atso calculate the average shear stress at the channel boundary.
(06 Marks)

OR

4 a. Explain with a neat sketch of specific energy curve. Also derive an expression for critical depth, critical velocity and minimum specific energy.
(10 Marks)
b. A rectangular channel which is laid on a bottom slope of 0.0064 is to carry $20 \mathrm{~m}^{3} / \mathrm{s}$ of water. Determine the width of the channel when the flow is in critical condition. Take Manning's coefficient $=0.015$.
(06 Marks)

Module_3

5 a. Derive an expression for depth of hydraulic jump in terms of upstream Froude number.
(08 Marks)
b. The depth of flow of water, at a certain section of a rectangular channel of 2 m wide, is 0.3 m . The discharge through the channel is $I .5 \mathrm{~m}^{3} / \mathrm{s}$. Determine whether a hydraulic pump will occur, and if so, fmd its height and loss of energy per Newton of water.
(08 Marks)

6 a. Derive GVF equation in the form $\underset{d \mathrm{dx}}{=} \stackrel{\mathrm{O}_{\mathrm{i}}}{\left(1-\mathrm{Fr}^{\prime}\right)} \mathrm{i}$, where $\frac{\mathrm{dh}}{\mathrm{dx}}=$ slope of free surface, $\mathrm{i}_{\mathrm{b}}=$ bed slope, $i_{e}=$ energy line slope, $h=$ depth of flow and $v=$ velocity of flow. State the assumptions made.
(09 Marks)
b. Find the free surface slope in a rectangular channel of width 20 m , having depth of flow 5 m .

The discharge through the channels is $50 \mathrm{~m}^{3} / \mathrm{s}$. The longitudinal bed slope is 1 in 4000 . Take $\mathrm{C}=60$.
(07 Marks)

Module-4

7 a. Derive an expression for force exerted by a jet strikes the moving curved vane at the centre and also work done by the jet.
(09 Marks)
b. A jet of water of diameter 75 mm strikes a curved vane at its centre with a velocity of $20 \mathrm{~m} / \mathrm{s}$. The curved vane is moving with a velocity of $8 \mathrm{~m} / \mathrm{s}$ in the direction of the jet. The jet is deflected through an angle of 165°. Assume the plate is smooth. Find: i) Force exerted on the plate in the direction of jet, ii) Power of the jet and iii) Efficiency of the jet. (07 Marks)

OR

8 a. Explain with a sketch the general layout of a hydro-electric power plant.
(05 Marks)
b. Discuss the classification of turbines.
(05 Marks)
c. Determine the power given by the jet of water to the runner of a Pelton wheel which is having tangential velocity as $20 \mathrm{~m} / \mathrm{s}$. The net head at the turbine is 50 m and discharge through the jet of water is $0.03 \mathrm{~m}^{3} / \mathrm{s}$. The side clearance angle is 15° and $\mathrm{C}_{\mathrm{v}}=0.98$.
(06 Marks)

Module-5

9 a. With a neat sketch explain working principle of Kaplan turbine and also mention the main components.
(08 Marks)
b. A Kaplan turbine develops 24647.60 kW power at an average head of 39 m . Assuming the speed ratio of 2 , flow ratio $0 f 0.6$, diameter of the bars equal to 0.35 times the diameter of the runner and an overallefficiency of 90%, calculate the diameter, speed and specific speed of the turbine.
(08 Marks)

OR

10 a. Obtain an expression for the work done by impeller of a centrifugal pump on water per` second per unit weight of water.
(06 Marks)
b. Define the terms: suction head, delivery head, static head and manometric head.
(04 Marks)
c. A centrifugal pump is to be discharge $0.118 \mathrm{~m}^{3} / \mathrm{s}$ at a speed of 1450 rpm against head of 25 m . The impeller diameter is 250 mm , its width at outlet is 50 mm and manometric efficiency is 75%. Determine the vane angle at the outer periphery of the impeller.
(06 Marks)

$$
\text { Cnr }{ }^{\text {tys }}
$$

