a.;

Ü

CO

bl.) et

-v. F.,

+ r"1

Ω

00 "G

CO co

0 0 **a**. 0.

0

co 4⁼

8

0

CO

О

USN

17MAT31

Third Semester B.E. Degree Examination, Dec.2019/Jan.2020 Engineering Mathematics - III

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the Fourier series expansion of $f(x) = x - x^2$ in (—it, n), hence deduce that

$$\frac{\text{rc}}{12} = 1^2 + 2^{24-} 3^2 + 4^2 + \dots$$
 (08 Marks)

b. Find the half range cosine series for the function $f(x) = (x \ 1)^2$ in 0 < x < 1. (06 Marks)

c. Express y as a Fourier series upto first harmonics given

X	0	60 ⁰	120°	180°	240°	300°
у	7.9	7.2	3.6	0.5	0.9	6.8

(06 Marks)

OR

2 a. Obtain the Fourier series for the function :

$$f(x) = \begin{vmatrix} 1 + \frac{4x}{3} & \text{in} \frac{-3}{2} < x \ 0 \\ 1 - \frac{4x}{3} & \text{inO} \end{vmatrix}$$

Hence deduce that $T_{8} = \frac{1}{12} + \frac{1}{3} + \frac{1}{5} + \frac{1}{12}$

(08 Nlarks)

b. if
$$f(x)$$

$$\begin{cases} x & \text{in } 0 < x < \bigvee_{2} \\ x - x & \text{in } \bigvee_{2} < x < \end{cases}$$

Show that the half range sine series as

$$f(x) = \lim_{x \to 0} \sin 3x \sin 5x$$
 (06 'Marks)

C. Obtain the Fourier series upto first harmonics given :

X	0	1	2	3	4	5	6
y	9	18	24	28	26	20	9

(06 Marks)

Module-2

3 a. Find the complex Fourier transform of the function:

$$f(x) = \begin{cases} & \text{for I} & \text{a} \\ & \text{O for IxI} > \text{a} \end{cases} \text{ and hence evaluate } f = \begin{cases} \frac{\sin x}{\cos x} \\ & \text{dx} \end{cases}.$$
 (08 Marks)

b. Find the Fourier cosine transform of e^{-ax}.

(06 Marks) (06 Marks)

Solve by using z transforms u_n , $-4u_n = 0$ given that $u_0 = 0$ and $u_1 = 2$.

www.FirstRanker.com

171\

OR

4 a. Find the Fourier sine and Cosine transforms of:

$$f(x) = \begin{cases} x & 0 < x < 2 \\ 0 & \text{elsewhere} \end{cases}$$
 (08 Marks)

b. Find the Z — transform of : i) n² ii) ne^{ar}

(06 Marks)

c. Obtain the inverse Z — transform of 2z (z+2)(z-4)

(06 Marks)

Module-3

5 a. Obtain the lines of regression and hence find the co-efficient of correlation for the data:

Х	1	3	4	2	5	8	9	10	13	15
y	8	6	10	8	12	16	16	10	32	32

(08 Marks)

b. Fit a parabola $y = ax^-bx + c$ in the least square sense for the data :

X	1	2	3	4	5
У	10	12	13	16	19

(06 Marks)

c. Find the root of the equation $xe^x \cos x = 0$ by Regula Falsi method correct to three decimal places in (0, 1). (06 Marks)

OR

- 6 a. If 8x 10y + 66 = 0 and 40x 18y = 214 are the two regression lines, find the mean of x's, mean of y's and the co-efficient of correlation. Find o if $6_x = 3$. (08 Marks)
 - b. Fit an exponential curve of the form $y = ae^{bx}$ by the method of least squares for the data:

No. of petals	5	6	7	8	9	10
No. of flowers	133	55	23	7	2	2

(06 Marks)

c. Using Newton—Raphson method, find the root that lies near x = 4.5 of the equation tanx = x correct to four decimal places. (06 Marks)

Mod u le-4

7 a. From the following table find the number of students who have obtained marks :

i) less than 45 ii) between 40 and 45.

Marks	30 — 40	40 — 50	50 - 60	60 - 70	70 — 80
No. of students	31	42	51	35	31

(06 Marks)

b. Using Newton's divided difference formula construct an interpolating polynomial for the following data:

Χ	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

and hence find f(8). (08 Marks)

c. Evaluate taking seven ordinates by applying Simpson s 78 rule.

(06 Marks)

17MAT31

OR

a. In a table given below, the values of y are consecutive terms of a series of which 23.6 is the 6th term. Find the first and tenth terms of the series by Newton's formulas.

X	3	4	5	6	7	8	9
у	4.8	8.4	14.5	23.6	36.2	52.8	73.9

(08 Marks)

b. Fit an interpolating polynomial of the form x = f(y) for data and hence find x(5) given :

X	2	10	17
у	1	3	4

(06 Marks)

c. Use Simpson's $\frac{3 \text{rd}}{\text{rule to find}}$ rule to find \mathbf{j} e'dx by taking 6 sub-intervals.

(06 Marks)

- Module-5 a. Verify Green's theorem in the plane for $^{4),(3x^2}$ $^{8y^2)dx} + (4y 6xy)dy$ where C is the closed curve bounded by y = -Fc and $y = x^2$. (08 Marks)
 - b. Evaluate xydx + xy'dy by Stoke's theorem where C is the square in the x y plane with vertices (1, 0)(-1, 0)(0, 1)(0, -1). (06 Marks)
 - c. Prove that Catenary is the curve which when rotated about a line generates a surface of minimum area. (06 Marks)

 x_7 k and S is the rectangular parallelepiped bounded by x = 0, y = 0, (08 Marks)

- Derive Euler's equation in the standard form viz $\left| \frac{d}{dy} \frac{of}{dx} \right| = 0$.
- -y 2y sin x)dx under the end conditions c. Find the external of the functional $l = 6^{l}$ y(0) = y(n/2) = 0.(06 Marks)