

gonal cross lines on the remaining nd /or equations written eg, 42+8 =

G


2. Any revealing of ide 1

ortant Note: 1. On completing your

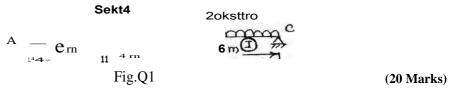
www.FirstRanker.com

www.FirstRanker.com

A

Fifth Semester S.E. Degree Examination, De .

Jan n.2020


Analysis of Indeterminate Structures

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question front each module.

Module-1

Analyse the beam completely by slope deflection method relative to support A support B sinks by imm and support C rises by 0.5 mm. Take El = 30000 kN-m2. Refer Fig.Q1. Draw BMD, SFD and Elastic curve.

OR

Analyse the given frame by slope deflection method. Draw SFD, BMD and elastic curve. Refer Fig.Q2.

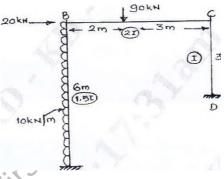


Fig.Q2 (20 Marks)

Module-2

Analyse the beam shown in Fig.Q3 by moment distribution method. Draw BMD, SFD and elastic, curve.

(20 Marks)

OR

4 Analyse the frame by moment distribution method. Draw BMD, SFD and elastic curve. Refer Fig.Q4.

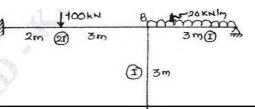


Fig.Q4

Module-3

Analyse the three span continuous beam shown in Fig.Q5 by using Kani's method. L BMD, SFD and elastic curve.

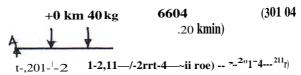


Fig.Q5 (20 Marks)

OR

6 Analyse the portal frames shown in Fig.Q6 by using Kani's method. Draw BMD, SFD and elastic curve.

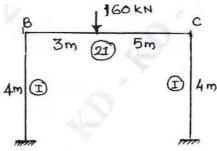
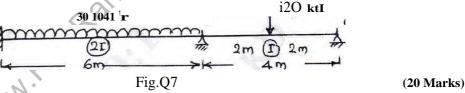
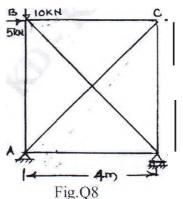



Fig.Q6 (20 Marks)

Module-4


Analyse the continuous beam shown in Fig.Q7 by flexibility method using system approach. Support B sinks by 5 mm sketch BMD, SFD and elastic curve. Take $El = 15 \times 10 \text{ kN-m}^{-1}$.

OR

8 Analyse the pin jointed plane truss shown in Fig.Q8 by using flexibility matrix method.

Assume ----- for each member -= 0.025 mm/kN. Tabulate the member forces. AF,

(20 Marks)

17CV52

Module-5

Analyse the frame shown in Fig.Q9 by stiffness matrix method and draw BMD, SFD and Elastic curve. Assume El is constant throughout. 30 kK

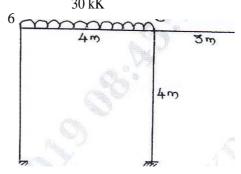


Fig.Q9 (20 Marks)

OR

Analyse the continuous beam shown in Fig.Q1.0 by using stiffness matrix method. 3ekk 40kt-4 40k.w.

rr ,2. re) **rr**

Fig.QlO (20 Marks)