

www.FirstRanker.com

r USN					

4c0f an.2020

Fourth Semester B.E. Degree Examination, Advanced Surveying

Max. Marks: 100

17CV46

Time: 3 hrs.

Note: Answer any FIVE flat questions, choosing ONE full question from each module.

,∪ ★				<u>Modul</u>	<u>e-1</u>					
-	1	a. b.	'hat is the relation between the degree of a curve and its radius?(06 Marks)What are the requirements of an essential transition curve?(06 Marks)							
0		c.	A reverse curve AB is to be two area of the curve are to	A reverse curve AB is to be set out between two parallel railway tangents 32m apart. If the						
CO			160m calculate the radius	The curve is to	be setout	from AB at	10m intervals along that			
a) .c t.0 = 1.n. •			line. Calculate the length of	offsets.	be belout	lioni i ib ui	(08 Marks)			
•7)				OR	2					
.e	2	a. 1	Explain how a simple circula	r curve is setout	by perpen	dicular offse	ts from long chord.			
P, -1-		h	Explain the features of vertic				(06 Marks)			
tı		U.	Explain the features of vertic	al curves.	a third lin	MN auch	(04 Marks) 1.5×7 CMN = 45° 20' and			
_		с.	Two straights AC and CB and	e intersected by			$\operatorname{Inat} \mathbb{Z} \mathbb{C} \mathbb{V} \mathbb{I} \mathbb{N} = 45 50 \operatorname{and}$			
5			LCNM = 35' 30' and the d	istance $MN = 3$	20m. Find	the radius o	f the curve which will be			
0			tangential to the three lines	AC, MN and C	\mathbf{B} . If the c	hainage of t	he intersection point C is			
0 c		4875.50m, calculate the chainages of the point of curve A and the point of tangency B.								
0 0							(10 Platks)			
cz at				<u>1110du</u>	le-2					
8	3 a	a. Ez	xplain first order, second ord	ler and third ord	ler triangul	ation syster	ns. (06 Marks)			
-573 AV		b.	Explain the three kinds of e	rrors.			(06 Marks)			
0 0		c.	From a satellite station S, 5	5.8m from main	triangulati	on station A	, the following directions			
(1)			were observed:							
			L'	A 0)"				
cA• O			~	B 13	$\frac{2^{\circ}}{18'}$ 18' 3	0"				
C/3				C 23	2° 24' (5"				
с. - 1				D 29	6° 6' 1	1"				
6 ¹	The lengths of AB, AC and AD were computed to be 3265.5m, 4022.2m and 3086.4m									
•- ^{GO}			respectively. Determine the	directions of A	B, AC and	AD.	(08 Marks)			
				OF	Ł					
	4	a.	What are the important facto	rs to be consider	red in selec	tion of site t	for a base line? (06 Marks)			
OQ		b.	Explain Satellite stations ar	nd reduction to c	entre.		(06 Marks)			
		c.	Find the most probable va	lues of the angle	es A and B	from the fo	llowing observations at a			
0 Z			station 0.			1	(08 Marks)			
CO				$A = 9^{\circ}$	48' 36.6"	Weight 2				
0				$B = 54^{\circ}$	37' 48.3"	Weight 3				
0				A + B = 104'	26' 28.5"	Weight 4				

www.FirstRanker.com

5

www.FirstRanker.com

www.FirstRanker.com

17CV46

Module-3

a. Define the ter	ms, celestial sphere, prime vertical and hour angle.	(06 Marks)
b. Explain the	solution of spherical triangle by Napiers rule.	(06 Marks)
c. Determine t	he azimuth and altitude of a star from the following data:	
Declination	of star = $20^{\circ} 30' \text{ N}$	
Hour angle	of star = 42° 6'	
Latitude of o	$bbserver = 50^{\circ}N$	(08 Marks)

OR

- 6 a. Mention the properties of a spherical triangle. (06 Marks)
 b. Calculate the distance in kilometers between two pint A and B along the parallel of latitude, given that:
 - i) Lat. of A, $28^{\circ} 42'$ N; longitude of A, 31' 12' W
 - Lat. of B, $28^{\circ} 42'$ N; longitude of B, $47^{\circ} 24'$ W
 - ii) Lat. of A 12° 36' S; longitude of A, 115° 6' W Lat. of B 12° 36' S; longitude of B, 150° 24' E.
 - c. The standard time meridian in India is 82° 30' E. If the standard time at any instant i-20hours, 24 min, 6 secs, find the local mean time for a place having 20°E longitude.

(06 Marks)

(06 Marks)

(06 Marks)

(08 Marks)

Module-4

- 7 a. Define: vertical photograph, tilted photograph and oblique photograph.
 - b. Describe how mosaic differs from a map.
 - c. A section line AB appears to be 10.16 ems on a photograph for which the focal length is 16cms. The corresponding line measures 2.54 ems on a map which is to a scale of 1:50000. The terrain has an average elevation of 200m above mean sea level. Calculate the flying altitude of the aircraft, above mean sea level when the photograph was taken. (08 Marks)

OR

8	a. I	Define: Perspective projection, Nadir point and tilt.	(06 Marks)
	b.	List the reasons for keeping overlap in photographs.	(06 Marks)
	c.	What is relief displacement? Derive its expression.	(08 Marks)

Module-5

9 a. Mention the advantages of total station and describe its working principle.(10 Marks)b. What is GIS? Mention its applications to Civil Engineering.(10 Marks)

OR

10 a. Explain the working principle of GPS. What are the differences between hand held GPS and differential GPS? (10 Marks)
 b. What are the advantages of LIDAR technology? (10 Marks)