

USN

17MAT41

Fourth Semester B.F. Degree Examination, Dec.2019/Jan.2020 **Engineering Mathematics - IV**

Time: 3 hrs. Max. Marks: 100

> Note: Answer any MR full questions, choosing ONE full question from each module.

Module-1

- a. From Taylor's series method, find y(0.1), considering upto fourth degree term if y(x)satisfying the equation $\frac{d}{dx} = \mathbf{x} \mathbf{y}^2$, $\mathbf{y}(0) = 1$.
 - b. Using Runge-Kut a method of fourth order $\frac{d}{dx} + y = 2x$ at x = 1.1 given that y = 3 at x = 1initially. (07 Marks)
 - c. If $\frac{dy}{dy} = 2ex$ y, y(0) = 2, y(0.1) = 1010, y(0.2) = 2.040 and y(0.3) = 2.090, find y(0.4)correct upto four decimal places by using Milne's predictor-corrector formula. (07 Marks)

- a. Using modified Euler's method find y at x = 0.2 given dy = 3x with y(0) = 1 taking h = 0.1. (06 Marks)
 b. Given $\frac{d}{dx}I + y + zy^2 = 0$ and y(0) = I, y(0.1) = 0.9008, y(0.2) = 0.8066, y(0.3) = 0.722. 2
 - Evaluate y(0.4) by Adams-Bashforth method. (07 Marks)
 - c. Using Runge-Kutta method of fourth order, find y(0.2) for the equation dx y + xy(0) - I taking h = 0.2.(07 Marks)

Module-2

Apply Milne's methOd to compute y(0.8) given that $\frac{\mathbf{d} \mathbf{y}}{\mathbf{d} \mathbf{x}^2} = \mathbf{I} - 2\mathbf{y} \frac{\mathbf{d} \mathbf{y}}{\mathbf{d} \mathbf{x}}$ and the following table 3 of initial values.

X	0	0.2	0.4	0.6		
У	0	0.02	0.0795	0.1762		
	0	0.1996	0.3937	0.5689		

(06 Marks)

b. Express $f(x) = x^4 + 3x^3 - x^2 + 5x - 2$ in terms of Legendre polynomials.

^{C.} Obtain the series solution of Bessel's differential equation $x^2y'' + xy' + (x^2 + n^2)y = 0$ leading to $3_1(x)$. (07 Marks)

OR

- 4 a. Given y" xy' y = 0 with the initial conditions y(0) = 1, $y^{\dagger}(0) = 0$, compute y(0.2) y'(0.2) using fourth order Runge-Kutta method. (06 Mark
 - b. Prove $\mathbf{L}_{i,2}(\mathbf{k}) = \frac{2}{\text{TEX}} \cos x$. (07 Marks)
 - c. Prove the Rodfigues formula P_i , P_i , P_i and P_i , P_i and P_i are P_i and P_i are P_i are P_i are P_i and P_i are $P_$

Module-3

5 a. Derive Cauchy-Riemann equations in. Cartesian form.

(06 Marks)

b. Discuss the transformation $w = z^{-1}$.

(07 Marks)

C. By using Cauchy's residue theorem, evaluate

 $\frac{z^{2}}{(z+1)(z+2)} dz \text{ if C is the circle } 1z1=3.$

(07 Marks)

OR

6 a. Prove that
$$\frac{a}{ex^2} + \frac{a}{|a|} f(z)|^2 = r^{(Z)}$$

(06 Marks)

b. State and prove Cauchy's integral formula.

(07 Marks)

c. Find the bilinear transformation which maps z = 00, i, 0 into w = -1, -i, 1.

(07 Marks)

Module-4

7 a. Find the mean and standard of Poisson distribution.

(06 Marks)

- b. In an examination 7% of students score less than 35 marks and 89% of the students score less than 60 marks. Find the mean and standard deviation if the marks are normally distributed given A(1.2263) = 0.39 and A(1.4757) = 0.43 (07 Marks)
- c. The joint probability distribution table for two random variables X and Y is as follows:

•	thoir .		O I till	COIII	uriuc		
Y	.6		-1	4			
	1	0.1	0.2	0	0.3		
	2	0.2	0.1	0.1	0		

Determine:

- i) Marginal distribution of X and Y
- ii) Covariance of X and Y
- iii) Correlation of X and Y

(07 Marks)

OR

8 a. A random variable X has the following probability function:

			\sim					
X	0	1	2	3	4	5	6	7
P(x)	0	K	2k	2k	3k	\mathbf{K}^2	$2k^2$	$7k^2+k$

Find K and evaluate P(x 6), P(3 < x 6).

(06 Marks)

- b. The probability that a pen manufactured by a factory be defective is 1/10. If 12 such pens are manufactured, what is the probability that
 - i) Exactly 2 are defective
 - ii) Atleast two are defective
 - iii) None of them are defective.

(07 Marks)

- c. The length of telephone conversation in a booth has been exponential distribution and found on an average to be 5 minutes. Find the probability that a random call made
 - i) Ends in less than 5 minutes
 - ii) Between 5 and 10 minutes irstRanker.com

www.FirstRanker.com

www.FirstRanker.com

17MAT41

Module-5

- 9 a. A die is thrown 9000 times and a throw of 3 or 4 was observed 3240 times. Show that the dia cannot be regarded as an unbiased die. (06 Marks)
 - b. A group of 10 boys fed on diet A and another group of 8 boys fed on a different disk B for a period of 6 months recorded the following increase in weight (lbs):

Diet A:	EII	6	8	ilia	4	3	9	a	10
Diet B:	2	3	6	8_10	ı	2		·	

Test whether diets A aid B differ significantly t.05 = 2.12 at 16df

(07 Marks)

c. Find the unique fixed probability vector for the regular stochastic matrix

$$A = \begin{vmatrix} 0 & 1 & 0 \\ 1/6 & 1/2 & 1/3 \\ 0 & 2/3 & 1/3 \end{vmatrix}$$
 (07 Marks)

		OR				
10	a.	Define the terms:				
		i) Null hypothesis				
		Type-I and Type-Il error				
		iii) Confidence limits				(06 Marks)
			112	0	1/2	
	b.	The t.p.m. of a Markov chain is given by P =	1	0	0	. Find the fined probabilities
			1/4	1/2	1/4	
		vector.				(07 Marks)

c. Two boys B_{\parallel} and B_{\parallel} and two girls G_{\parallel} and G_{\parallel} are throwing ball from one to another. Each boy throws the ball to the Other boy with probability 1/2 and to each girl with probability 1/4. On the other hand each girl throws the ball to each boy with probability 1/2 and never to the other girl. In the long run how often does each receive the ball? (07 Marks)