17MAT41

Fourth Semester B.F. Degree Examination, Dec.2019/Jan. 2020 Engineering Mathematics - IV

Time: 3 hrs.
Max. Marks: 100

Note: Answer any MR full questions, choosing ONE full question from each module.

Module-1

1 a. From Taylor's series method, find $y(0.1)$, considering upto fourth degree term if $y(x)$ satisfying the equation ${ }_{d x}^{d v}=x^{2}, y(0)=1$.
(06 Marks)
b. Using Runge-Kut a method of fourth order $\underset{d x}{d}+y=2 x$ at $x=1.1$ given that $y=3$ at $x=1$ initially.
(07 Marks)
c. If $\quad \frac{d y}{d x}=2 e x \quad y, y(0)=2, y(0.1)=1010, y(0.2)=2.040$ and $y(0.3)=2.090$, find $y(0.4)$ correct upto four decimal places by using Milne's predictor-corrector formula.
(07 Marks)

OR

2
a. Using modified Euler's method find yat $x=0.2$ given $\underset{d x}{d y}=3 x$ 2
with $\mathrm{y}(0)=1$ taking $\mathrm{h}=\mathbf{0 . 1}$.
(06 Marks)
b. Given $\frac{d}{d x} I \mathrm{y}+\mathrm{zy}^{2}=0$ and $\mathrm{y}(0)=\mathrm{I}, \mathrm{y}(0.1)=0.9008, \mathrm{y}(0.2)=0.8066, \mathrm{y}(0.3)=0,722$. Evaluate $y(0.4)$ by Adams-Bashforth method.
(07 Marks)
c. Using Runge-Kutta method of fourth order, find $y(0.2)$ for the equation $\mathrm{y}(0)-\mathrm{I}$ taking $\mathrm{h}=0.2$.

Module-2

3
Apply Milne's methOd to compute $y(0.8)$ given that $\frac{\mathbf{d} \mathbf{y}}{d x} 2=I-2 y \frac{d y}{d x}$ and the following table of initial values.

x	0	0.2	0.4	0.6
y	0	0.02	0.0795	0.1762
	0	0.1996	0.3937	0.5689

(06 Marks)
b. Express $f(x)=x^{4}+3 x^{3}-x^{2}+5 x-2$ in terms of Legendre polynomials.
C. Obtain the series solution of Bessel's differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}+n^{2}\right) y=0$ leading to $3_{1}(x)$.
(07 Marks)

OR

4 a. Given $y^{\prime \prime} \mathrm{xy}^{\prime}-\mathrm{y}=0$ with the initial conditions $\mathrm{y}(0)=1, \mathrm{y}^{1}(0)=0$, compute $\mathrm{y}(0.2)$ $y^{\prime}(0.2)$ using fourth order Runge-Kutta method.
(06 Mark
b. Prove $\mathrm{L}_{\mathrm{i}, 2}(\mathrm{k})=\frac{2}{\mathrm{TEX}} \cos \mathrm{x}$.
(07 Marks)
c. Prove the Rodfigues formula $P_{i},(x)=\frac{1 d y}{2 " n!d x "}\left(X^{2-}\right)^{\prime \prime}$
(07 Marks)

Module-3

5 a. Derive Cauchy-Riemann equations in. Cartesian form.
(06 Marks)
b. Discuss the transformation $w=z^{-}$.
(07 Marks)
C. By using Cauchy's residue theorem, evaluate $\frac{{ }^{2},}{z+1)(z+2} d z$ if C is the circle $1 z 1=3$.
(07 Marks)

OR

6 a. Prove that $\left.{ }^{\mathrm{a}} \mathrm{eX}^{2}{ }^{+}{ }^{\cdots} \quad \mathrm{f}(\mathrm{Z})\right|^{2} \quad \mathbf{4} \mathbf{r}^{(\mathrm{Z})}$
(06 Marks)
b. State and prove Cauchy's integral formula.
(07 Marks)
c. Find the bilinear transformation which maps $\mathrm{z}=00, \mathrm{i}, 0$ into $\mathrm{w}=-1,-\mathrm{i}, 1$.
(07 Marks)

Module-4

7 a. Find the mean and standard of Poisson distribution.
(06 Marks)
b. In an examination 7% of students score less than 35 marks and 89% of the students score less than 60 marks. Find the mean and standard deviation if the marks are normally distributed given $\mathrm{A}(1.2263)=0.39$ and $\mathrm{A}(1.4757)=0.43$
(07 Marks)
c. The joint probability distribution table for two random variables X and Y is as follows:

x^{2}		-1	4	
1	0.1	0.2	0	0.3
2	0.2	0.1	0.1	0

Determine:
i) Marginal distribution of X and Y
ii) Covariance of X and Y
iii) Correlation of X and Y
(07 Marks)

OR

8 a. A random variable X has the following probability function:

x	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x})$	0	K	2 k	2 k	3 k	K^{2}	$2 \mathrm{k}^{2}$	$7 \mathrm{k}^{2}+\mathrm{k}$

Find K and evaluate $P(x 6), P(3<x 6)$.
(06 Marks)
b. The probability that a pen manufactured by a factory be defective is $1 / 10$. If 12 such pens are manufactured, what is the probability that
i) Exactly 2 are defective
ii) Atleast two are defective
iii) None of them are defective.
(07 Marks)
c. The length of telephone conversation in a booth has been exponential distribution and found on an average to be 5 minutes. Find the probability that a random call made

Module-5

9 a. A die is thrown 9000 times and a throw of 3 or 4 was observed 3240 times. Show that the dia cannot be regarded as an unbiased die.
(06 Marks)
b. A group of 10 boys fed on diet A and another group of 8 boys fed on a different disk B for a period of 6 months recorded the following increase in weight (lbs):

Test whether diets A aid B differ significantly $\mathrm{t} .05=2.12$ at 16 df
(07 Marks)
c. Find the unique fixed probability vector for the regular stochastic matrix

$$
A=\left|\begin{array}{ccc}
0 & 1 & 0 \\
1 / 6 & 1 / 2 & 1 / 3 \\
0 & 2 / 3 & 1 / 3
\end{array}\right|
$$

OR

a. Define the terms:
i) Null hypothesis

Type-I and Type-Il error
iii) Confidence limits
b. The t.p.m. of a Markov chain is given by $\left.\mathrm{P}=\left\lvert\, \begin{array}{ccc}112 & 0 & 1 / 2 \\ 1 & 0 & 0 \\ 1 / 4 & 1 / 2 & 1 / 4\end{array}\right.\right]$. Find the fined probabilities
vector.
(07 Marks)
b. The t.p.m. of a Markov chain is given by $\mathrm{P}=\left\lvert\, \begin{array}{ccc}112 & 0 & 1 / 2 \\ 1 & 0 & 0 \\ 1 / 4 & 1 / 2 & 1 / 4\end{array} \quad\right.$. Find the fined probabilities
vector.
(07 Marks)
(06 Marks)
c. Two boys B_{\mid}and B 2 and two girls G_{\downarrow} and G 2 are throwing ball from one to another. Each boy throws the ball to the Other boy with probability $1 / 2$ and to each girl with probability $1 / 4$. On the other hand each girl throws the ball to each boy with probability $1 / 2$ and never to the other girl. In the long run how often does each receive the ball?
(07 Marks)

