Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-I

b. Differentiate between thin and thick cylinders.
(03 Marks)
c. Compute the thickness of the wall of a thick cylinder subjected to an internal pressure of $40 \mathrm{~N} / \mathrm{mm}^{2}$. The internal diameter of the cylinder is 200 mm and the permissible hoop stress is 140 MPa . Sketch the hoop stress and radial pressure across the thickness assuming zero external pressure.
(07 Marks)

Module-3

5 a. Define SF, BM and point of contraflexure.
(03 Marks)
b. A simply supported beam $A B$ of span L is subjected to a concentrated load at distance 'a' from left support A. Develop expressions for SF and BM. Sketch SFD and BMD . (05 Marks)
c. Sketch SFD and BMD for the beam shown in Fig.Q.5(c) indicating the salient po ints.
(12 Marks)

Fig.Q.5(c)

OR

6 a. Sketch SFD and BMD for the beam shown in Fig.Q.6(a) indicating salient points.

Fig.Q.6(a)
(08 Marks)
b. Sketch SFD and BMD for the beam shown in Fig.Q.6(b) indicating salient points including point of contraflexure.
(12 Marks)

Fig.Q.6(b)

Module-4

7 a. Derive the equation of pure bending ${ }_{1}^{M}=\underset{y}{y} \mathbf{R}^{E}$ with usual notations.
(10 Marks)
b. A shaft of hollow C / S rotates at 200 rpm transmitting a power of 800 kW with internal diameter $=0.8$ times external diameter. Computer the diameters if the maximum shear stress is limited to $100 \mathrm{~N} / \mathrm{mm}^{\prime}$ and the angle of twist to 1^{0} in a length of 4 m . Assume that the maximum torque is 30% greater than the mean torque and $\mathrm{G}=80 \mathrm{GP}$
(10 Marks)

OR

8 a. State the assumptions made in the theory of pure torsion.
(05 Marks)
b. Derive an expression for power transmitted by a shaft.
c. A I-section consists of flanges 200×15 with web 10 mm thick. Total depth of the section is 500 rnm . If the beam carries a UDL of $35 \mathrm{kN} / \mathrm{m}$ over a span of 8 m , computer the bending and shear stresses at centre and support respectively. Sketch their distributions.
(10 Marks)

Module-5

9 a. Derive an expression for slope and deflection in a simply supported subjected to UDL throughout. Calculate the maximum slope and deflection.
(06 Marks)
b. Define:
i) Buckling load
ii) Effective length
iii) Slenderness ratio.
(06 Marks)
c. Compute the crippling loads using Euler's and Rankine's formula for a hollow circular column 200 mm external diameter and 25 mm thick. The length of the column is 4 m with both ends hinged. Assume $\mathrm{E}=200 \mathrm{GPa}$, Rankine's constants $\mathrm{a}=32 \mathrm{OMPa}$ and $\mathrm{a}=1 / 7500$.
(08 Marks)

OR

10 a. Derive an equation for buckling load in a long column with both ends hinged using Euler's column theory.
(08 Marks)
b. Determine the slopes at A and B, deflections at C, D and E in the beam shown in Fig.Q.10(b) in terms of EI.
(12 Marks)

