Ciscechene
 USN

 Fifth Semester B.E. Degree Examination, Dee.2019/Jan. 2020 Automata Theory and Computability

15CS54

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Briefly describe the applications of Theory of computation.
b. Define DFSM. Build DFSM for the following languages.
i) $\mathbf{L}=\mathrm{E}$ a,b\} *: every a in w is immediately folloWed by b\}
ii) $\boldsymbol{L}=\{\mathrm{a}, \mathrm{b}\}^{*}: \mathrm{w}$ does not contain substring aabl.
c. Describe Machine based hierarchy of language classes.

2 a. For the following NDFSM, use ndfsmtodfsm to construct an equivalent DFSM. Begin by showing the value of eps (q) for each state q :

b. Let M be the following DFSM. Use minDFSM to minimize M .
(08 Marks)

Module-2

3 a. Define Regular Expression. Write regular expression for the following :
i) $L=\left\{w_{E}\{a, b\}^{*}: w\right.$ does not end in ha $\}$
ii) $\mathrm{L}=\mathrm{E} O-9\}^{*} \mathrm{w}$ corresponds to the decimal encoding, without leading 0's, of an odd natural number\} . (06 Marks)
b. Consider the FSM M. Use the fsmtoregexheuristic algorithm to construct a regular expression that describes $L(M)$.
(05 Marks)

c. Consider the FSM M. Use fsmtoregex algorithm to construct a regular expression that describes L(M).
(05 Marks)

OR

4 a. Show that regular languages are closed under complement and set difference.
(06 Marks)
b. State and prove pumping lemma theorem for regular languages. And show that the language $\mathrm{L}=\{$ anbn: $\mathrm{n}>0\}$ is not regular.
(10 Marks)

Module_3

5 a. Define CFG. Design CFG for the languages.
i) $\mathbf{L}=1 a^{i} 1112 \mathrm{i}=3 \mathrm{j}+1$)
ii) $\mathrm{L}=\mathrm{Kr}^{`} 1^{\mathrm{n}} \ln$? I).
(08 Marks)
b. Define Chomskey Normal form. Convert the following CFG to CNF.

S/--> a ACa
$\mathrm{A}-\div \mathrm{aIB}$
B-, C 1 c
C cCIE.
(08 Marks)

OR

6 a. Define Ambiguity. Consider the grammar E + EE I * EE I - EE I x y. Find the leftmost, rightmost derivations and parse trees for the string " + * - xyxy".
b. Define PDA. Design a PDA to accept thefollowing language. $L=\left\{w w^{R}: w \mathbf{e}\{a, b\}^{*}\right\}$. Draw the transition diagram for the constructed PDA.
(09 Marks)

Module_4

7 a. Design a TM to accept the language $L=\left\{a^{\prime \prime} b^{n} I n>1\right\}$. Obtain the transition table and transition diagram. Also show the instantaneous description for the string "aabb". (11 Marks)
b. Explain the working principle of TM with diagram.
(05 Marks)

OR

8 a. State and prove pumping theorem for CFL's shown that the language $\left.\mathrm{L}=\mathrm{bnc} \mathrm{c}^{\prime \prime}: \mathrm{n}>0\right\}$ is not context free.
(10 Marks)
b. Explain the hierarchy within the class of CFL's (hierarchy of languages).
(03 Marks)
c. Show that CFL's are closed under reverse.

Module 5

9 a. Explain Multitape TM, with diagram.
(05 Marks)
b. Prove that every language accepted by a multitape TM is acceptable by some standard TM.
(06 Marks)
c. Explain the model of Linear Bounded Automata.
(05 Marks)

10 Write short notes on :
a. Undecidable languages.
b. Halting problem of TM.
c. Post correspondence problem.

