

www.FirstRanker.com

www.FirstRanker.com

FirstRanker.com

www.FirstRanker.com

FirstRanker.com

www.FirstRanker.com

(08 Marks)

(08 Marks)

c. Consider the FSM M. Use fsmtoregex algorithm to construct a regular expression that describes L(M). (05 Marks)

4 a. Show that regular languages are closed under complement and set difference. (06 Marks) b. State and prove pumping lemma theorem for regular languages. And show that the language $L = \{anbn: n > 0\}$ is not regular. (10 Marks)

$Module_{-3}$

- 5 a. Define CFG. Design CFG for the languages. i) $\mathbf{L} = \mathbf{1a}^{i} \mathbf{11}^{i} \mathbf{12} = \mathbf{3j} + \mathbf{1}$ ii) $\mathbf{L} = \mathbf{Kr}^{*} \mathbf{1}^{n} \mathbf{1n}$? I).
 - b. Define Chomskey Normal form. Convert the following CFG to CNF.

S/--> a ACa A—÷aIB B—→ C1c

C cCI E.

OR

- 6 a. Define Ambiguity. Consider the grammar E + EE I * EE I EE I x y. Find the leftmost, rightmost derivations and parse trees for the string " + * xyxy". (07 Marks)
 b. Define PDA. Design a PDA to accept the following language.
 - $L = \{ww^{R} : w \in \{a, b\}^{*}\}$. Draw the transition diagram for the constructed PDA. (09 Marks)

Module_4

7 a. Design a TM to accept the language L = {a" bⁿ I n > 1 }. Obtain the transition table and transition diagram. Also show the instantaneous description for the string "aabb". (11 Marks)
b. Explain the working principle of TM with diagram. (05 Marks)

OR

a. State and prove pumping theorem for CFL's shown that the language L =8 bn c" : n > 0 is not context free. (10 Marks) b. Explain the hierarchy within the class of CFL's (hierarchy of languages). (03 Marks) Show that CFL's are closed under reverse. C. (03 Marks) Module_5 9 a. Explain Multitape TM, with diagram. (05 Marks) b. Prove that every language accepted by a multitape TM is acceptable by some standard TM. (06 Marks) c. Explain the model of Linear Bounded Automata. (05 Marks) OR a,("JCIPt_'N Write short notes on : 10 a. Undecidable languages. b. Halting problem of TM. c. Post correspondence problem. Church — Turing Thesis. (<mark>16 Marks</mark>) Coq_{e-gc} www.FirstRanker.com

2 of 2