FirstRanker.com

SOC

L1BRA.R.Y
CHIKOCI U
15CS64

Sixth Semester B.E. Degree Examination, Dec: •1ㄱ n. 2020 Operating Systems

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE fall questions, choosing ONE full question from each module.

Module-1

$1 \bullet$ a. What is operating system? Explain multiprogramming and time sharing systems.
(06 Marks)
b. Explain dual mode operating in operating system with a neat block diagram.
(05 Marks)
c. What are system calls? Briefly point out its types.

OR

2 a. Explain process states with state transition diagram. Also explain PCB with a neat diagram.
b. What is interprocess communication? Explain its types.
c. With a neat diagram, explain the concept of virtual machines.

Module-2

3 a. For the process listed below, draw Gantt charts using pre-emptive and non-preemptive priority scheduling algorithm. A larger priority number has a higher priority. Calculate Averag

Jobs	Arrival Time	Burst Time	Priority
J_{1}	0	6	-
J_{2}	3	5	
$\mathrm{~J}^{2}$	3	3	\vdots
J 4	5	5	$\mathbf{\Phi}$

(06 Marks)
b. Is CPU scheduling necessary? Discuss the five different scheduling criterias used in the computing scheduling mechanism.
(05 Marks)
c. Explain multithreading models.

OR

4 a. Define semaphores. Explain its usage and implementation.
(06 Marks)
b. Explain Reader-Write problem with semaphore in detail.
(05 Marks)
c. What are monitors? Explain dining Philospher's solution using monitor.

Module-3

5 a. System consists of five jobs (J1, J2, J3, 11, J5) and three resources (R1, R2, R3). Resource type R_{\mid}has 10 instances, resource type R2 has 5 instances and R3 has 7 instances. The following snapsh

Jobs	Allocation			Maximum			Available		
	R1	R2	R3	R1	R2	R3	R1		R3
Ji	0			$\stackrel{\rightharpoonup}{\square}$			3	3	2
J2	\bigcirc			8	T	\sum_{2}			
J3	3		\cong	0	0	z			
J4	0			2	0	2			
J5	<		$\stackrel{ }{*}$	\bigcirc	${ }_{9}^{8}$	T			

Find need matrix and calculate the safe sequence by using Banker's algorithm. Mention the
b. What is dead lock? What are necessary conditions an operating system must satisfy for a dead lock to occur?
(05 Marks)
c. What is a Resource Allocation Graph (RAG)? Explain how RAG is very useful is describing deadly embrace by considering own example.
(05 Marks)

OR

6 a. What are Translation Load aside Buffer (TLB)? Explain TLB in detail with a simple paging system with a neat diagram.
(06 Marks)
b. Given the memory partitions of $100 \mathrm{~K}, 500 \mathrm{~K}, 200 \mathrm{~K}, 300 \mathrm{~K}$ and 600 K apply first fit, best fit and worst fit algorithms to place $212 \mathrm{~K}, 417 \mathrm{~K}, 112 \mathrm{~K}$ and 426 K .
(05 Marks)
c. Describe both internal and external fragmentation problems encountered in a contiguous memory allocation scheme.
(05 Marks)

Module 4

7 a. Consider the following page reference stream: $7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7$, 0,1 . How many page faults would occur for LRU and FIFO replacement algorithms assuming 3 frames? Which one of the above is most efficient?
b. explain demand paging system.
c. What is thrashing? How can it be controlled?

OR

8 a. Explain briefly the various operations performed on files.
(06 Marks)
b. Explain the various access methods of files.
(05 Marks)
c. Explain various allocation methods in implementing file systems.

Module 5

9 a. Explain the various Disk Scheduling algorithms with example.
b. Explain access matrix method of system protection.

OR

10 With a neat diagram explain in detail components of a Linux system.
(06 Marks)
h Explain the different IPC mechanisms available in Linux.
e. Explain process scheduling in a Linux system.

