
MATDIP401

Fourth Semester B.E. Degree Examination, Dec.2019/Jan. 2020 Advanced Mathematics - II

Time: 3 hrs .
Max. Marks:100

Note: Answer any FIVE full questions.

1 a. If $\left[\mathrm{I}, \mathrm{ln},, \mathrm{n}_{\mathrm{i}} 1\right.$ and $\left[1_{2}, \mathrm{~m}_{2} \mathrm{n} 2\right]$ be the direction cosines of two lines subtending an angle $\mathbf{0}$ between them then prove that $\cos 0=1{ }_{3} l+m, m_{2}+n_{i} n$,.
(06 Marks)

2 a. Find the equation of the plane which bisects the line joining $(3,0,5)$ and $(1,2,-1)$ at right angles.
(06 Marks)
b. Show that the points $(2,2,0),(4,5,1),(3,9,4)$ and $(0,-1,-1)$ are coplanar. Find the equation of the plane containing them.
(07 Marks)
c. Find the shortest distance and the equations of the line of shortest distance between the lines:
$x_{3}^{-6 y-7} z-4$ and $\frac{x y}{-3}=\frac{+9 z}{2}=-2$
(07 Marks)

3 a . Show that the position vectors of the vertices of a triangle $\mathrm{a}=4 \mathrm{i}+5 \mathrm{j}+6 \mathrm{k}, \mathrm{b}=51+6 \mathrm{~J}+4 \mathrm{k}$ and $\mathrm{c}=61+41+5 \mathrm{k}$ form an isosceles triangle.
(06 Marks)
b. Prove that the points with position vectors $4 \mathrm{i}+53+\quad \mathbf{j}+\quad 31+93+41$ (and $\mathbf{- i} \mathbf{+} \mathbf{S j} \mathbf{+ 4 k}$ are coplanar.
(07 Marks)
c. A particle moves along the curve $x \quad 2 t^{2}, y=t \wedge-4 t$ and $z=3 t 5$ where t is the time t. Find the components of velocity and acceleration in the direction of the vector $\mathrm{i}-3 \mathrm{j}+2 \mathrm{k}$ at t 1 .
(07 Marks)
4 a. Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9, x^{2}+y^{2}-=3$ at (2,-1,2). (06 Marks)
b. Find the directional derivatives of the function (I) $=x y z+4 x z^{2}$ at $(1,-2,-1)$ along $2 i-j-2 k$
(07 Marks)
c. Find div F and curl F at the point $(1,-1,1)$ where $\left.\mathrm{F}=\operatorname{NIxy}{ }^{3} \mathrm{z}^{2}\right)$.
(07 Marks)
5 a. If $r=\overrightarrow{x i}+y j+z k$ and $r=|r|$ then prove that,
(i) $\quad \mathrm{V}($ ril $)=\mathrm{nrn}{ }^{-2} \mathbf{r}$
V.(rn. r + 3)rn
(06 Marks)
b. Show that $\left.F=2 x y^{2}+y z\right) i+\left(2 x^{2} y+x z+2 y z^{2}\right) 1+\left(2 y^{2} z+x y\right) f c$ is irrotational and hence find a scalar function (i) such that $\mathrm{F}=\mathrm{Vcb}$.
(07 Marks)
c. Find the value of the constant 'a' such that $A=y\left(a x^{2}+z\right)+x(y \quad) 3+2 x y(z-x y) k$ is
a. Find the Laplace transform of, (i) $\sin 5 t \cos 2 t$
(ii) $\left(3 t+2^{2}\right.$
(06 Marks)
b. Find the Laplace transform of \cos at - \cos bt
c. Find the Laplace transform of $t^{2} \sin$ at .
(07 Marks)
(07 Marks)

7 a. Find the inverse Laplace transform of $\begin{gathered}s+5 \\ s-6 s+13\end{gathered}$
b. Find $11^{-1}\left\{\left.\log \frac{s+a}{+b}\right|_{\text {, }}\right.$
(06 Marks)
c. Find
(07 Marks)
$8{ }^{\text {a. }}$ Using convolution theorem find the Laplace transform of ${ }_{\mathrm{sks}^{2}-\mathrm{Fa} \mathbf{1}^{1}}$.
(10 Marks)
b. Solve the differential equation, $y^{\prime \prime}+5 y^{\prime}+6 y=5 \mathrm{e}^{2 \prime}$ under the condition $\mathrm{y}(0)=2, \mathrm{y}^{\prime}(0)=1$ using Laplace transform.
(10 Marks)

