0 MEE

17MAT31

Third Semester B.E. Degree Examination, Dec.2019/Jan. 2020 Engineering Mathematics _ III

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1
a. Find the Fourier series expansion of $f(x)=x$
in (-7T, 7). hence deduce that

n^{2}	1	1	1	1
12	1^{2}	-2^{-1}	3^{2}	4^{-}

b. Find the half range cosine series for the function $f(x)=(x-1)^{2}$ in $0<x<1$.
(06 Marks)
c. Express y as a Fourier series upto first harmonics given :

x	0	60°	120°	180°	240°	300°
y	7.9	7.2	3.6	0.5	0.9	6.8

(06 Marks)

OR

2 a. Obtain the Fourier series for the function :

Hence deduce that $\frac{\mathrm{it}^{\prime}}{8}=-\frac{1}{1},+\frac{1}{3},+\frac{4}{5!}+---$
(08 Marks)
b. If $f(x) \left\lvert\, \begin{array}{cc}x & \text { in } 0<x<7 / 2 \\ I T-x & \text { in } r_{2}<x<\pi\end{array}\right.$

Show that the half range sine series as

$$
\begin{array}{cc}
f(x) \cdot-4[\sin x & \sin 3 x \tag{06Marks}\\
n & 3^{2} \\
\sin 5 x & - \\
52
\end{array}
$$

c. Obtain the Fourier series upto first harmonics given :

x	0	1	2	3	4	5	6
y	9	18	24	28	26	20	9

(06 Marks)
Module-2
3 a. Find the complex Fourier transform of the function :

$$
f(x)=\begin{align*}
& 1 \text { for } \tag{08Marks}\\
& .0 \text { for } l x j>a
\end{align*} \quad \text { and hence evaluate } f \sin ^{\sin } \underline{x} d x .
$$

b. Find the Fourier cosine transform of e^{x}.

OR

4 a. Find the Fourier sine and Cosine transforms of :

$$
f(x)=\begin{aligned}
& \{x 0<x<2 \\
& 0 \text { elsewhere } .
\end{aligned}
$$

(08 Marks)
b. Find the $\mathrm{Z}-$ transform of : i) n^{2} ii) ne^{\prime}.
c. Obtain the inverse $Z-$ transform of $\begin{gathered}2 z^{2}+3 z \\ (z+2)(z-4)\end{gathered}$
(06 Marks)

Module-3

5 a . Obtain the lines of regression and hence find the co-efficient of correlation for the data :

x	1	3	4	2	5	8	9	10	13	15
y	8	6	10	8	12	16	16	10	32	32

(08 Marks)
b. Fit a parabola $y=a x^{2}+b x+c$ in the least square sense for the data :

x	1	2	3	4	5
y	10	12	13	16	19

(06 Marks)
C. Find the root of the equation $x e^{x}-\cos x=0$ by Regula - Falsi method correct to three decimal places in $(0,1)$.
(06 Marks)
OR
6 a. If $8 x-10 y+66=0$ and $40 x-18 y=214$ are the two regression lines, find the mean of x 's, mean of y 's and the co-efficient of correlation. Find a_{y} if $a=3$.
(08 Marks)
b. Fit an exponential curve of the form $y=a e^{b x}$ by the method of least squares for the data :

No, of petals	5	6	7	8	9	10
No, of flowers	133	55	23	7	2	2

(06 Marks)
c. Using Newton-Raphson method, find the root that lies near $x=4.5$ of the equation $\tan x=x$ correct to four decimal places.
(06 Marks)

Module-4

7 a. From the following table find the number of students who have obtained marks :
i) less than 45 ii) between 40 and 45 .

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of students	31	42	51	35	31

(06 Marks)
b. Using Newton's divided difference formula construct an interpolating polynomial for the following data :

x	4	5	7	10	11	13
$\mathrm{f}(\mathrm{x})$	48	100	294	900	1210	2028

and hence find g8).
(08 Marks)
c. Evaluate ${ }^{\mathrm{i}} \mathrm{dx}$ taking seven ordinates by applying Simpson's $\%^{\text {th }}$ rule.
(06 Marks)

OR

8 a . In a table given below, the values of y are consecutive terms of a series of which 23.6 is the $6^{\text {th }}$ term. Find the first and tenth terms of the series by Newton's formulas.

x	3	4	5	6	7	8	9
y	4.8	8.4	14.5	23.6	36.2	52.8	73.9

(08 Marks)
b. Fit an interpolating polynomial of the form $x=f(y)$ for data and hence find $x(5)$ given :

x	2	10	17
y	1	3	4

(06 Marks)
c. Use Simpson's ${ }^{3^{\text {rd }}}$ ruleto find I $\mathrm{e}^{0 . x^{-}}$dx by taking 6 sub-intervals.
(06 Marks)

Module-5

9 a. Verify Green's theorem in the plane for $\mathrm{ili}_{c}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the closed curve bounded by $y=-$ srx and $y=x^{2}$.
(08 Marks)
b. Evaluate ${ }_{i} \mathrm{xydx}+\mathrm{xy}^{2}$ dy by Stoke's theorem where C is the square in the $\mathrm{x}-\mathrm{y}$ plane with vertices $(1,0)(-1,0)(0,1)(0,-1)$.
(06 Marks)
c. Prove that Catenary is the curve which when rotated about a line generates a surface of minimum area.
(06 Marks)
OR
10 a. If $F=2 x y l+y z^{2} x z k$ and S is the rectangular parallelepiped bounded by $x=0, y=0$, $\mathrm{z}=0, \mathrm{x}=2, \mathrm{y}=1, \mathrm{z}=3$ évaluate $\mathrm{F} . \mathrm{n}$ us \cdot
(08 Marks)
Derive Euler's equation in the standard form viz $\frac{o f}{a_{y}}-\begin{gathered}{[\text { af }} \\ d x a y^{\prime}\end{gathered}=0$.
(06 Marks)
c. Find the external of the functional $I=\stackrel{2}{J}\left(y^{2}-y^{\prime 2}-2 y \sin x\right) d x$ under the end conditions
$y(0)=y(n / 2)=0$.
(06 Marks)

