Module-1

- a. Find the Fourier series expansion of f(x) = xin (-7T, 7). hence deduce that n^2 1 1 1 1
 - $1^2 7^{-1}$ 3² 4^{-} 12

X	0	60°	120°	180°	240°	300°
у	7.9	7.2	3.6	0.5	0.9	6.8

2 a. Obtain the Fourier series for the function :

$\mathbf{f}(\mathbf{x}) = \begin{vmatrix} 1 + \frac{1}{2} \\ 1 \end{vmatrix}$	$\frac{4x}{3} \stackrel{-3}{=} < \frac{4x}{2}$ $\frac{4x}{3} \text{in } 0 x < \frac{4x}{3}$	x 0
---	--	-----

anker.com Hence deduce that $\frac{it'}{8}$

b. If f(x)
$$\begin{vmatrix} x & \text{in } 0 < x < \frac{\pi}{2} \\ \pi - x & \text{in } r_2 < x < \pi \end{vmatrix}$$

Show that the half range sine series as

$$\begin{array}{c|c} f(x) \cdot _4 \begin{bmatrix} \sin x & \sin 3x & \sin 5x \\ 3^2 & 5^2 \end{bmatrix} \\ \hline n \end{array}$$
 (06 Marks)

c. Obtain the Fourier series upto first harmonics given :

Х	0	1	2	3	4	5	6
y	9	18	24	28	26	20	9

Module-2

3 a. Find the complex Fourier transform of	of the function :
1 6	

$f(x) = \int for$	and hence evaluate f $\frac{\sin x}{dx}$	(08 Marks)
0 for $lxj>a$	() X	(101-1-1-2)

b. Find the Fourier cosine transform of e^x .

c.	Solve by using z - transforms $u_n+2 - 4un = 0$ given that $u0 = 0$ and $u1 = 2$.	(06 Marks)
	www.FirstRanker.com	

Engineering Mathematics _ III Time: 3 hrs. Max. Marks: 100

Third Semester B.E. Degree Examination, Dec.2019/Jan.2020

MEE

Note: Answer any FIVE full questions, choosing ONE full question from each module.

1

- b. Find the half range cosine series for the function $f(x) = (x 1)^2$ in 0 < x < 1. (06 Marks)

OR

c. Express y as a Fourier series upto first harmonics given :

USN

FirstRanker.com

www.FirstRanker.com

17MAT31

(08 Marks)

(06 Marks)

(08 Marks)

(06 Marks)

(06 Marks)

www.FirstRanker.com

www.FirstRanker.com

17

4 a. Find the Fourier sine and Cosine transforms of	:
---	---

- $f(x) = \begin{cases} x \ 0 < x < 2 \\ 0 \text{ elsewhere }. \end{cases}$ (08 Marks)
- b. Find the Z transform of : i) n^2 ii) ne'.
- c. Obtain the inverse Z transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$ (06 Marks)
 - Module-3

5 a. Obtain the lines of regression and hence find the co-efficient of correlation for the data :

x	1	3	4	2	5	8	9	10	13	15
y	8	6	10	8	12	16	16	10	32	32

b. Fit a parabola $y = ax^2 + bx + c$ in the least square sense for the data :

Х	1	2	3	4	5
у	10	12	13	16	19

(06 Marks)

(08 Marks)

(06 Marks)

- C. Find the root of the equation $xe^{x} \cos x = 0$ by Regula Falsi method correct to three decimal places in (0, 1). (06 Marks)
- **OR** 6 a. If 8x - 10y + 66 = 0 and 40x - 18y = 214 are the two regression lines, find the mean of x's, mean of y's and the co-efficient of correlation. Find a _y if a = 3. (08 Marks) b. Fit an exponential curve of the form $y = ae^{bx}$ by the method of least squares for the data :

No. of petals	5	6	7	8	9	10
No. of flowers	133	55	23	7	2	2

(06 Marks)

c. Using Newton—Raphson method, find the root that lies near x = 4.5 of the equation tanx = x correct to four decimal places. (06 Marks)

Module-4

7 a. From the following table find the number of students who have obtained marks :i) less than 45 ii) between 40 and 45.

Marks	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
No. of students	31	42	51	35	31

(06 Marks)

b. Using Newton's divided difference formula construct an interpolating polynomial for the following data :

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

and hence find g8).

- (08 Marks)
- c. Evaluate $\frac{1}{6} \frac{dx}{1+x}$ taking seven ordinates by applying Simpson's %th rule. (06 Marks)

www.FirstRanker.com

17MAT31

OR

8 a. In a table given below, the values of y are consecutive terms of a series of which 23.6 is the 6th term. Find the first and tenth terms of the series by Newton's formulas.

X	3	4	5	6	7	8	9
у	4.8	8.4	14.5	23.6	36.2	52.8	73.9

(08 Marks)

b. Fit an interpolating polynomial of the form x = f(y) for data and hence find x(5) given :

Х	2	10	17
у	1	3	4

(06 Marks)

(06 Marks)

(06 Marks)

c. Use Simpson's 3^{rd} ruleto find I e x dx by taking 6 sub-intervals.

9 a. Verify Green's theorem in the plane for ili $_{c}(3x^{2} - 8y^{2})dx + (4y - 6xy)dy$ where C is the closed curve bounded by y = -srx and $y = x^{2}$. (08 Marks)

b. Evaluate $_{i}i xydx + xy^{2}dy$ by Stoke's theorem where C is the square in the x – y plane with

vertices (1, 0)(-1, 0)(0, 1)(0, -1). (06 Marks) c. Prove that Catenary is the curve which when rotated about a line generates a surface of minimum area. (06 Marks)

OR

10 a. If $F = 2xyl + yz^2 \times z k$ and S is the rectangular parallelepiped bounded by x = 0, y = 0, z = 0, x = 2, y = 1, z = 3 evaluate F. \hat{n} us $\cdot \cdot$ (08 Marks)

Derive Euler's equation in the standard form viz $\frac{\text{of}}{a_y} - \frac{[\text{af}]}{dx ay'} = 0$. (06 Marks)

c. Find the external of the functional I = $J(y^2 - y'^2 - 2y \sin x) dx$ under the end conditions

$$y(0) = y(n/2) = 0.$$

