Fifth Semester B.E. Degree Examination, Dec. 201 171.ili. 2020 Digital Signal Processing

Time: 3 hrs .
Max. Marks: 100
Note: Answer ant' FIVE full questions, choosing ONE full question from each module.

Module-1

a. Show that finite duration sequence of length L can be reconstructed from the equidistant N samples of its Fourier transform, where N ?_L.
b. Compute the 6 - point DFT of the sequence $x(n)--11,0,3,2,3,0\}$.
c. Find the N-point DFT of the sequence $x(n)=a^{n}, 0_{\ldots} . . n _N-1$.

OR

2 a . Determine the 6 -point sequence $\mathrm{x}(\mathrm{n})$ having the DFT

$$
X(K)=\{12,-3-0,0,0,0,-3+j J\}
$$

(08 Marks)
b. Derive the equation to express z - transform of a finite duration sequence in terms of its N-point DFT.
(06 Marks)
c. Compute the circular convolution of the sequences On$)=\{1,2,2,11$ and $\mathrm{x} 2(\mathrm{n})=1-1,-2,-2,-11$.
(06 Marks)

Module-2

3 a. State and prove the modulation property (multiplication in time-domain) of DFT. ($\mathbf{0 6}$ Marks)
b. The even samples of an eleven-point DFT of a real sequence are : $X(0)=8, X(2)=-2+j 3$, $X(4)=3-j 5, X(6)=4+j 7, X(8)=-5-j 9$ and $X(10)=, 1 / \mathrm{S}-\mathrm{j} 2$. Determine the odd samples of the DFT.
(06 Marks)
c. An LTI system has impulse response $h(n)=\{2,1,-1\}$. Determine the output of the system for the input $\mathrm{x}(\mathrm{n})=11,2,3,3,2,11$ using circular convolution method.
(08 Marks)

OR

4 a. State and prove circular time reversal property of DFT.
(06 Marks)
b. Determine the number of real multiplications, real additions, and trigonometric functions required to compute the 8 -point DFT using direct method.
(04 Marks)
c. Find the output $y(n)$ of a filter whose impulse response is $h(n)=\{1,2,11$, and the input is $x(n)=\{3,-1,0,1,3,2,0,1,2,11$ using overlap -add method, taking $\mathrm{N}=6$.
(10 Marks)

Module-3

5 a. Compute the 8-pont DFT of the sequence $x(n)=\cos (\operatorname{Tcn} / 4), 0 \quad n 7$, using DIT-FFT algorithm.
(10 Marks)
b. Given $x(n)=11,2,3,41$, compute the DFT sample $X(3)$ using Goestzel algorithm.
(06 Marks)
c. Determine the number of complex multiplications and complex additions required to
compute 64-point DFT using radix. 2 FFT algorithm.
(04 Marks)

OR

6 a. Determine the sequence $x(n)$ corresponding to the 8-point DFT $\mathrm{X}(\mathrm{K})=(4,1-\mathrm{j} 2.414,0,1-\mathrm{j} 0.414,0,1+\mathrm{j} 0.414,0,1+\mathrm{j} 2.414\}$ using DIF-FFT algorithm.
(10 Marks)
b. Draw the signal flow graph to compute the 16 -point DFT using DIT-FFT algorithm.
(04 Marks)
c. Write a short note on Chirp-z transform.
(06 Marks)

Module-4

7 a. Draw the direct form I and direct form II structures for the system given by :

$$
\mathrm{H}(\mathrm{z})=\begin{gathered}
\mathrm{z}^{-\mathrm{I}}-3 \mathrm{z}^{-2} \\
1+4 \mathrm{z}^{-1}+2 \mathrm{z}^{-2}-0.5 \mathrm{z}^{-3}
\end{gathered}
$$

(08 Marks)
b. Design a digital Butterworth filter using impulse-invariance method to meet the following specifications :

$$
0.8 \text {.IFI (co) I__1, } \quad \text { \& } \quad(\mathrm{o}<0.2 \mathrm{n}
$$

$$
\mathrm{IH}(6)) 1 \quad 0.2,0.67 \mathrm{c} 5 . . \mathrm{o})
$$

Assume T=1.
(12 Marks)

OR

8 a . Draw the cascade structure for the system given by :

$$
\begin{equation*}
\mathbf{H}(\mathrm{z})=\frac{(\mathrm{z}-1)(\mathrm{z}-3)\left(\mathrm{z}^{2}+5 \mathrm{z}+6\right)}{\left(\mathrm{z}^{2}+6 \mathrm{z}+5\right)\left(\mathrm{z}^{-}-6 \mathrm{z}+8\right)} \tag{08Marks}
\end{equation*}
$$

b. Design a type-1 Chebyshev analog filter to meet the following specifications :

$$
\begin{aligned}
& \mathrm{H}(\mathrm{Q}) \text { I dB 5. 0, } \quad 0 \mathrm{f} 2<1404 \mathrm{Rrad} / \mathrm{sec} \\
& \mathrm{H}(\mathrm{n}) \mathrm{I} \mathrm{~dB}-60, \text { SI } 8268 \mathrm{nrad} / \mathrm{sec}
\end{aligned}
$$

(12 Marks)

Module-5

9 a . Realize the linear phase digital filter given by :

$$
\mathrm{H}(\mathrm{z})=1+\frac{1}{2} \mathrm{z}^{-1}+\frac{\mathbf{i}}{3}-\mathrm{z}^{-2}+\frac{2}{5} \mathrm{z}^{-3}+\mathrm{z}_{3}-4
$$

b. List the advantages and disadvantages of FIR filter compared with IIR filter.
(04 Marks)
c. Determine the values of $\mathrm{h}(\mathrm{n})$ of a detail low pass filter having cutoff frequency $\operatorname{coc}=7 \mathrm{E} / 2$ and length $\mathrm{M}=11$. Use rectangular window.
(10 Marks)

OR

10 a. An FIR filter is given by : $y(n)=x(n)+-x(n-1)+{ }_{5}^{3} x(n-2)+-x(n-3)$. Draw the Lattice structure.
(06 Marks)
b. Determine the values of filter coefficients $h(n)$ of a high—pass filter having frequency response :

$$
\begin{aligned}
\mathbf{H}_{\mathrm{d}}\left(\mathrm{e}^{" \mathrm{l}}\right) & \left.=1, \quad \frac{\text { it }}{4} 1 \mathrm{o}\right) \quad \text { It } \\
& =0, \mathrm{IwI}<{ }_{4}
\end{aligned}
$$

Choose $\mathrm{M}=11$ and use Hanning windows.
(10 Marks)
c. Write the time domain equations, widths of main lobe and maximum stop band attenuation

