

USN

17MAT31

Third Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Engineering Mathematics** _ III

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Find the Fourier series expansion of f(x) = xin (-7T, 7). hence deduce that

(08 Marks) $12 \quad 1^2 \quad \overline{2}^2 \quad 3^2 \quad 4^{-1}$

- b. Find the half range cosine series for the function $f(x) = (x 1)^2$ in 0 < x < 1. (06 Marks)
- c. Express y as a Fourier series upto first harmonics given:

X	0	60°	120°	180°	240°	300°
у	7.9	7.2	3.6	0.5	0.9	6.8

(06 Marks)

OR

a. Obtain the Fourier series for the function:

$$f(x) = \begin{vmatrix} 1 + \frac{4x}{3} & \text{in } \frac{-3}{2} < x \text{ 0} \\ 1 & \frac{4x}{3} & \text{in } 0 \text{ x} < \frac{3}{2} \end{vmatrix}$$
Hence deduce that $\frac{it'}{8} = \frac{1}{12} + \frac{1}{33} + \frac{1}{52} + \cdots$.

(08 Marks)

b. If
$$f(x)$$

$$\begin{cases} x & \text{in } 0 < x < \frac{\pi}{2} \\ x & \text{in } x < \pi \end{cases}$$

Show that the half range sine series as

$$f(x) \cdot 4 \left[\sin x \sin 3x \sin 5x \right]$$

(06 Marks)

c. Obtain the Fourier series upto first harmonics given:

X	0	1	2	3	4	5	6
y	9	18	24	28	26	20	9

(06 Marks)

Module-2

3 a. Find the complex Fourier transform of the function :

$$f(x) = \begin{cases} for \\ 0 \text{ for } lxj > a \end{cases} \text{ and hence evaluate } \begin{cases} sin \underline{x} \\ 0 \end{bmatrix} dx . \tag{08 Marks}$$

b. Find the Fourier cosine transform of e^x.

(06 Marks) (06 Marks)

Solve by using z - transforms $u_n+2 - 4un = 0$ given that u0 = 0 and u1 = 2.

www.FirstRanker.com

17

OR

4 a. Find the Fourier sine and Cosine transforms of:

$$f(x) = \begin{cases} x & 0 < x < 2 \\ 0 & \text{elsewhere} \end{cases}$$

(08 Marks)

b. Find the Z — transform of : i) n² ii) ne'.

(06 Marks)

c. Obtain the inverse Z — transform of $\frac{2z^2}{(z+2)}$

(06 Marks)

Module-3

5 a. Obtain the lines of regression and hence find the co-efficient of correlation for the data:

X	1	3	4	2	5	8	9	10	13	15
y	8	6	10	8	12	16	16	10	32	32

(08 Marks)

b. Fit a parabola $y = ax^2 + bx + c$ in the least square sense for the data :

X	1	2	3	4	5
y	10	12	13	16	19

(06 Marks)

C. Find the root of the equation $xe^x - \cos x = 0$ by Regula — Falsi method correct to three decimal places in (0, 1).

OR

- 6 a. If 8x 10y + 66 = 0 and 40x 18y = 214 are the two regression lines, find the mean of x's, mean of y's and the co-efficient of correlation. Find a $_y$ if a = 3. (08 Marks)
 - b. Fit an exponential curve of the form $y = ae^{bx}$ by the method of least squares for the data:

No. of petals	5	6	7	8	9	10
No. of flowers	133	55	23	7	2	2

(06 Marks)

c. Using Newton—Raphson method, find the root that lies near x = 4.5 of the equation tanx = x correct to four decimal places. (06 Marks)

Module-4

7 a. From the following table find the number of students who have obtained marks:

i) less than 45 ii) between 40 and 45.

Marks	30 — 40	40 — 50	50 — 60	60 - 70	70 — 80
No. of students	31	42	51	35	31

(06 Marks)

(08 Marks)

b. Using Newton's divided difference formula construct an interpolating polynomial for the following data:

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

and hence find g8).

c. Evaluate $\int_{6^{1}}^{1} \frac{dx}{1+x}$ taking seven ordinates by applying Simpson's % th rule. (06 Marks)

www.FirstRanker.com

www.FirstRanker.com

17MAT31

OR

8 a. In a table given below, the values of y are consecutive terms of a series of which 23.6 is the 6^{th} term. Find the first and tenth terms of the series by Newton's formulas.

X	3	4	5	6	7	8	9
y	4.8	8.4	14.5	23.6	36.2	52.8	73.9

(08 Marks)

b. Fit an interpolating polynomial of the form x = f(y) for data and hence find x(5) given :

X	2	10	17
у	1	3	4

(06 Marks)

c. Use Simpson's 3rd ruleto find I e x dx by taking 6 sub-intervals.

(06 Marks)

Module-5

- 9 a. Verify Green's theorem in the plane for ili $_c(3x^2 8y^2)dx + (4y 6xy)dy$ where C is the closed curve bounded by y = -srx and $y = x^2$. (08 Marks)
 - b. Evaluate $i xydx + xy^2dy$ by Stoke's theorem where C is the square in the x y plane with

vertices (1, 0)(-1, 0)(0, 1)(0, -1).

(06 Marks)

c. Prove that Catenary is the curve which when rotated about a line generates a surface of minimum area. (06 Marks)

OR

10 a. If $F = 2xyl + yz^2 \times z k$ and S is the rectangular parallelepiped bounded by x = 0, y = 0,

$$z = 0$$
, $x = 2$, $y = 1$, $z = 3$ evaluate F \hat{n} us:

(08 Marks)

Derive Euler's equation in the standard form viz $\frac{of}{a_y} - \frac{[af]}{dx \ ay'} = 0$. (06 Marks)

c. Find the external of the functional $I = J(y^2 - y'^2 - 2y \sin x) dx$ under the end conditions

$$y(0) = y(n/2) = 0.$$
 (06 Marks)