in a half range Fourier sine series.

C Determine the constant term and the first cosine and sine terms of the Fourier series expansion of v from $t \wedge \cdot$

or y nom t									
2	xc'	0	45	90	135	180	225	270	315
2	У	2	3/2	1	1/2	0	1/2	1	3/2

(05 Marks)

Module-2

'Find the complex Fourier transform of the function

Obtain the Fourier series for the function f(x) =

x, for 0 < x < it/2

"7 12 for rc/2<x <7r

$$f(x) = \begin{vmatrix} 1 & \text{for } x \\ 0 & \text{for } \end{vmatrix}_{X} > a \qquad \text{Hence evaluate } j \quad \frac{\sin x}{dx} \qquad (06 \text{ Marks})$$

b. If
$$u(z)$$

$$\frac{*3z + 12}{(7^{-1})}$$
 show that $u_0 = 0$ $u_1 = 0 = 2$ 11. (05 Marks)

$$4x, \quad 0 < x < 1$$

f(x) = 4 x, I < x < 4 (05 Marks)
0 X > 4

www.FirstRankerloom

Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE fill! question from each module.

- Obtain the Fourier expansion of the function f(x) = x over the interval (-7c, rc). Deduce that 1 a. 1 1 1 (08 Marks) 4
 - b. The following table gives the variations of a periodic current A over a certain period T:

t (sec)	0	T/6	T13	T/2	2T/3	5T/6	Т
A (amp)	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

Show that there is a direct current part of 0.75 amp in the variable current and obtain the amplitude of the first harmonic. (08 Marks)

Module_I

Third Semester B.F. Degree Examination, Dec..241*Jan.2020 **Engineering Mathematics — III**

ted

$$-=1$$
 $3 \frac{1}{5} \frac{1}{7}$

www.FirstRanker.com

of

15MAT31

Max. Marks: 80

0 x < 0

(05 Marks)

(06 Marks)

E.

USN

2

3

÷ 1

C.

a.

f(x)

b. Represent the function

www.FirstRanker.com

www.FirstRanker.com

OR

4 a. Obtain the Z-transform of cosnO and sinnO.

b. Find the Fourier sine transform of f(x) =

and hence evaluate $\int \underline{x} \sin mx$

dx $\mathbf{m} > \mathbf{0}$.

15N

(05 Marks) (05 Marks)

(06 Mark

c. Solve by using Z-transforms $y_{,,,} + 2v_{,-+} y_n$ n with $y_0 = 0 = y_i$.

Module-3

5 a. Fit a second degree parabola y = ax' + bx + c in the least square sense for the following data and hence estimate y at x = 6. (06 Marks)

		2	3	4	J
У	/ 10	12	13	16	19

b. Obtain the lines of regression and hence find the coefficient of correlation for the data:

X	1	3	4	2	5	8	9	10	13	15
у	8	6	10	8	12	16	16	10	32	32

(05 Marks'

c• Use Newton-Raphson method to find a real root of xsinx + cosx = 0 near x = rt. Carryout the upto four decimal places of accuracy. (05 Marks)

OR

- a. Show that a real root of the equation tanx + tanhx = 0 lies between 2 and 3. Then apply the Regula Falsi method to find third approximation.
 (06 Marks)
 - b. Compute the coefficient of con elation and the equation of the lines of regression for the data:

Х	1	2	3	4	5	6	7
у	9	8	10	12	11	13	14
	ז'ר	7					

2

10

(05 Marks)

c. Fit a curve of the form y = ae for the data:

(05 Marks)

Module-4

0

8.12

7 a. From the following table find the number of students who have obtained:

Х

- i) Less than 45 marks
- ii) Between 40 and 45 marks.

	Marks	30-40	40-50	50-60	60-70	70-80		
	Number of students	31	42	51	35	31	(06	6 Marks)
•	. 1. 1	. 1.0 /	1 1 /	• 1	1	• N T		1

4

31.82

b. Construct the interpolating polynomial for the data given below using Newton's general interpolation formula for divided differences and hence find y at x = 3.

Х	2	4	5	6	8	10
у	10	96	196	350	868	1746

(05 Marks)

C. Evaluate $\int_{0}^{r} \frac{1}{1+1} dx$ by Weddle's rule. Taking seven ordinates. Hence find log e2. (05 Marks)

	2 of 3	
www.FirstRa	inker.com	

LIBRARy A'4vC - c)r)

www.FirstRanker.com

www.FirstRanker.com

15MAT31

OR

f(x)

4))))

8 a. Use Lagrange's interpolation formula to find f(4) given below.

b. Use Simpson's $3/8^{\parallel}$ ' rule to evaluate I e''dx

C. The area of a circle (A) corresponding to diatneter (D) is given by

D	80	85	90	95	100
А	5026	5674	6362	7088	7854

14

158

Find the area corresponding to diameter 105 using an appropriate interpolation formula.

(05 Marks)

<u>Module-5</u>

- 9 a. Evaluate Green's theorem for (1), $(xy + y^2) dx + x^2 dy$ where c is the closed curve of the region bounded by y = x and y (06 Marks)
 - b. Find the extrema! of the functional f $(x^{2}+3/^{2}+2y^{2}+2xy)dx$ (05 Marks)
 - c. Varity Stoke's theorem for F = (2x y) $yz^{2} yz$ k where S is the upper half surface of the sphere $x^{2} + y + z^{2} = 1$ C is its boundary. (05 Marks)

OR

10 a. Derive Euler's equation in the standard form $\begin{array}{c} of \\ d \\ dx \\ dx \\ 0 \end{array}$ (06 Marks)

- b. If F = 2xyi + 3, ²41+ xzk and S is the rectangular parallelepiped bounded by x 0, y = 0, z = 0, x = 2, y = 1, z = 3. Evaluate if F.fids (05 Marks)
- c. Prove that the shortest distance between two points in a plane is along the straight line joining them or prove that the geodesics on a plane are straight lines. (05 Marks)

FirstRanker.com

(06 Marks)

(05 Marks)