

www.FirstRanker.com

١,

E)

Ċ''' ∖ ^{C.;}

Third Semester B.E. Degree Examination, Dec.2filiffin.2020 **Basic Thermodynamics**

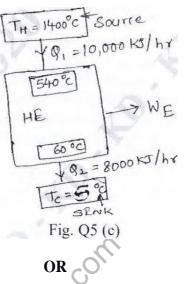
Time: 3 hrs.

υ -,t-

...Wi V) tr. 'DC e i Max. Marks: 80

i; 15M E33

Note: 1. Answer FIVE full questions, choosing one full question from each module. 2. Use of thermodynamic data hand book is permitted.


-;t-		Module-1						
A	1	a. Distinguish between the following:						
-0 -0 Ct		(i) Microscopic and macroscopic point of view of thermodynamics.						
		(ii) Extensive and Intensive properties.	(05 Marks)					
! <u>?;)</u> ?≞		b. Define the zeroth law of thermodynamics. A constant volume gas thermometer	-					
 ,		Helium gives a reading of gas pressure `P' of 1000 mmHg and 1366 mmHg at ic	-					
wi "		steam point respectively. Assuming a linear relationship of the form, $t = a + PP$,	-					
Wi tr. DC		gas thermometer Celcius temperature 't' in terms of gas pressure 1°. V						
e; i -t- F 7.1)		temperature recorded by the thermometer when it registers a pressure of 1074 mm	nHg? (06 Marks)					
		^{C.} Explain the thermodynamic definition of work with sustable diagram.	(05 Marks)					
, .,			(00 1111113)					
4		OR						
•,	2	a. Explain thermodynamic equilibrium concept.	(05 Marks)					
E: a)		b. Deduce the expression for work in case of shaft work and electrical work.	(05 Marks)					
7ci 8		c. The combustion gases of an IC engine expand with in an enclosed piston a	nd cylinder					
мо <u>к</u> :		arrangement and follow the path $PV'' = C$. The pressure at the beginning o	f the power					
2		stroke is 5 MPa and volume 50 cm^3 . At the end of the stroke the volume i						
		Calculate (i) The work developed during power stroke (ii) Average power de	eveloped by					
0		the gas if there are 20 power strokes per second.	(06 Marks)					
Е с	2	<u>Module-2</u>	f first low of					
= "are: 2	= 3 a. Explain the Joule's experiment and describe how it leads to the foundation of first thermodynamics. (0							
"are: .2		b. A nozzle is used to convert enthalpy into kinetic energy. Air enters the nozzle a	(05 Marks)					
ę		of 2700 KPa at a velocity of 30 m/s with an enthalpy of 923 KJ/kg and lea	-					
• 72		pressure of 700 KPa and enthalpy of 660 KJ/kg. (i) If the heat loss is 0.96 KJ an						
to		rate is 0.2 kg/s, find the exit velocity (ii) Find the exit velocity for adiabatic cor						
t.			(07 Marks)					
E		c. State both Kelvin Planck and Clausius statements of thermodynamics.	(04 Marks)					
۰¢		OR						
N	4	a. Explain PMMI and PMMII with suitable diagrams.	(06 Marks)					
		b. A reversible heat engine operates between two reservoirs at temperatures of	. ,					
		40°C. The engine drives a reversible refrigerator which operates between the						
		temperature of 40°C and -20 °C. The heat transfer to the heat engine is 2000						
		network output of the combined engine refrigerator plant is 360 KJ. Evalu						
		transfer to the refrigerator and net heat transfer to the reservoir at 40°C.	<u>(07 Mark</u> s)					
		C. Comment on the limitations of the first law of thermodynamics.	(03 Marks)					

www.FirstRanker.com

Module-3

- 5 a. What are the factors, that makes a process irreversible?
 - b. Derive Clausius inequality and comment on its outcome.
 - c. A heat engine is shown in the Fig. Q5 (c) where 10000 KJ/hr of heat is supplied from source at 1400°C while the working fluid is at 540°C. 8000 KJ/hr of heat is rejected to a sink at temperature 5°C and working fluid is at 60°C. Calculate the following:
 - (i) Actual efficiency of the engine.
 - (ii) Fraction of the actual efficiency of the internally reversible efficiency.
 - (iii) Fraction of actual efficiency of the external reversible efficiency. (06 Marks)

- 6 a. Prove that entropy is a property.
 - b. A closed system contains air at pressure I bar, temperature 290 K and volume 0.02 m'. The system undergoes a thermodynamic cycle consisting of the following three processes:
 - (i) Process 1 2: constant volume heat addition till the pressure becomes 4 bar.
 - (ii) Process 2 3 : Constant pressure cooling (iii) Process 3 1 : Isothermal heating to initial state. Represent the cycle in T-S and P-V plot. Evaluate the change of entropy for each case. Take $C_v = 718$ J/kg K, R = 287 J/kgK. (07 Marks)
 - c. Write a comment on thermodynamic temperature scale.

Module-4

7 a. Explain the concept of availability and unavailability. (04 Marks) b. Explain the working of throttling calorimeter with a neat diagram. (05 Marks) c. Find the maximum work/kg of air that can be obtained from a piston cylinder arrangement if the air expands from the initial state of P, = 6 bar, t =170 C to a final pressure of $P_2 = 1.4$ bar, t2 = 60°C. Neglecting changes in KE and PE and assuming t $_0 =15$ ' C, calculate the availability in the initial and final states. Compare the two results (Cp),..., = 1.005 KJ/kgK, **R** = 287 J/kg K. (07 Marks)

OR

- 8 a. Explain the PT diagram of a pure substance with all necessary points on it. (05 Marks)
 b. Show that the change in availability is equal to the change in Gibbs function when the
 - b. Show that the change in availability is equal to the change in Globs function when the temperature and pressure of the system are constant. (05 Marks)
 c. Steam from a boiler is delivered at 15 bar absolute and dryness fraction of 0.85 into a steam
 - c. Steam from a boiler is delivered at 15 bar absolute and dryness fraction of 0.85 into a steam super heater where an additional heat is added at constant pressure. Steam temperature now increases to 573K. Determine amount of heat added and change ;ya0^{*}_Kigte,,,&iergy for unit mass of steam.

(05 Marks)

(05 Marks)

(05 Marks)

(04 Marks)

www.FirstRanker.com

www.FirstRanker.com

15ME33

Module-5

9 a. Explain the Amagat's law of additive volume. (05 Marks) b. State Vander Waal's equation of state and Beattie-Bridgeman equation. (05 Marks) The air at DBT 28°C and 1 bar has a specific humidity of 0.016 kg per kg of dry air. c. Determine (i) Partial pressure of water vapour. Relative humidity. (ii) (06 Marks)

(iii) Dew point temperature.

OR

10 a. Explain the Dalton's law of partial pressure s. (04 Marks) b. Determine the pressure exerted by oxygen in a container of 2 m³ capacity when it contains 5 kg at 27°C using (i) Ideal gas equation (ii) Vander Waals equation. m^3 kNm₄

Take a =139.250	(kgmole)';	b = 0.0314	kgmole	(07 Marks)
Write short note of	n compressib	ility chart an	d its usefulness.	(05 Marks)

с. Write short note on compressibility chart and its usefulness.

www.FirstRanker.com