FirstRanker.com

CBCs Schemi

USN \square 17MAT31

Third Semester B.E. Degree Examination, Dec.2019/Jan. 2020 Engineering Mathematics - III

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the Fourier series expansion of $f(x)=x--x^{2}$ in (-it, n), hence deduce that $\mathrm{rc}^{-} \quad|\quad| \quad|\quad|$
$12=1^{2}+2^{24-} 3^{2}+4^{2}+-$
b. Find the half range cosine series for the function $f(x)=.\left(\begin{array}{ll}\mathrm{x} & \mathbf{1}\end{array}\right)^{2}$ in $0<\mathrm{x}<\mathbf{1}$.
(06 Marks)
c. Express y as a Fourier series upto first harmonics given

x	0	60°	120°	180°	240°	300°
y	7.9	7.2	3.6	0.5	0.9	6.8

(06 Marks)

OR

2 a. Obtain the Fourier series for the function :

$$
f(x)=\left\lvert\, \begin{array}{ccc}
1+\begin{array}{c}
4 x \\
3
\end{array} & \text { in } \frac{-3}{2}<x_{0} \\
1-\frac{4 x}{3} & \text { inO } & 3 \\
2
\end{array}\right.
$$

Hence deduce that $\mathrm{Tr}_{8}^{\prime} \stackrel{\mathbf{1}}{=}+\frac{1}{3)^{\prime}}+$
(08 Nlarks)
b. if $f(x) \left\lvert\, \begin{array}{cc}x & \text { in } 0<x<y_{2} \\ \text { TC-x } & \text { in } V<x<\end{array}\right.$

Show that the half range sine series as

$$
f(x)={ }_{-}^{4}\left[\sin x \quad \frac{\sin 3 x}{3^{4}} \sin 5 x\right.
$$

c. Obtain the Fourier series upto first harmonics given :

x	0	1	2	3	4	5	6
y	9	18	24	28	26	20	9

(06 Marks)

Module-2

3 a. Find the complex Fourier transform of the function :

(08 Marks)
b. Find the Fourier cosine transform of $\mathrm{e}^{-\mathrm{ax}}$.

OR

4 a. Find the Fourier sine and Cosine transforms of :

$$
f(x)=\begin{aligned}
& x 0<x<2 \\
& 0 \text { elsewhere }
\end{aligned}
$$

(08 Marks)
b. Find the Z - transform of : i) n^{2} ii) $\mathrm{ne}^{\mathrm{ari} \text {. }}$
(06 Marks)
c. Obtain the inverse $Z-\operatorname{transform}$ of $\underset{(z+2)(z-4)}{2}+3 z$
(06 Marks)

Module-3

5 a. Obtain the lines of regression and hence find the co-efficient of correlation for the data :

x	1	3	4	2	5	8	9	10	13	15
y	8	6	10	8	12	16	16	10	32	32

(08 Marks)
b. Fit a parabola $y=a x^{-} b x+c$ in the least square sense for the data :

x	1	2	3	4	5
y	10	12	13	16	19

(06 Marks)
c. Find the root of the equation $\mathrm{xe}^{\mathrm{x}} \cos \mathrm{x}=0$ by Regula Falsi method correct to three decimal places in $(0,1)$.
(06 Marks)

OR

6 a. If $8 x-10 y+66=0$ and $40 x-18 y=214$ are the two regression lines, find the mean of x 's, mean of y 's and the co-efficient of correlation. Find o if $6 x=3$.
(08 Marks)
b. Fit an exponential curve of the form $y=a e^{b x}$ by the method of least squares for the data :

No, of petals	5	6	7	8	9	10
No, of flowers	133	55	23	7	2	2

(06 Marks)
c. Using Newton-Raphson method, find the root that lies near $x=4.5$ of the equation $\tan x=x$ correct to four decimal places.
(06 Marks)

Mod u le-4

7 a. From the following table find the number of students who have obtained marks :
i) less than 45 ii) between 40 and 45 .

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of students	31	42	51	35	31

(06 Marks)
b. Using Newton's divided difference formula construct an interpolating polynomial for the following data :

x	4	5	7	10	11	13
$\mathrm{f}(\mathrm{x})$	48	100	294	900	1210	2028

and hence find $f(8)$.
(08 Marks)
dx
c. Evaluate taking seven ordinates by applying Simpson s 78 rule.
(06 Marks)

OR

8 a. In a table given below, the values of y are consecutive terms of a series of which 23.6 is the $6^{\text {th }}$ term. Find the first and tenth terms of the series by Newton's formulas.

x	3	4	5	6	7	8	9
y	4.8	8.4	14.5	23.6	36.2	52.8	73.9

(08 Marks)
b. Fit an interpolating polynomial of the form $x=f(y)$ for data and hence find $x(5)$ given :

x	2	10	17
y	1	3	4

(06 Marks)
(06 Marks)

Module-5

9 a. Verify Green's theorem in the plane for 4$),\left(3 x^{2} \quad 8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the closed curve bounded by $y=-F c$ and $y=x^{2}$.
(08 Marks)
b. Evaluate $x y d x+x y$ 'dy by Stoke's theorem where C is the square in the $x-y$ plane with vertices $(1,0)(-1,0)(0,1)(0,-1)$.
(06 Marks)
c. Prove that Catenary is the curve which when rotated about a line generates a surface of minimum area.
(06 Marks)

OR

10 a. If $\mathrm{F}=2 \mathrm{xy}+\mathrm{yz}^{-} \quad \mathrm{x} 7 \mathrm{k}$ and S is the rectangular parallelepiped bounded by $\mathrm{x}=0, \mathrm{y}=0$, $\mathrm{z}=0, \mathrm{x} 2, \mathrm{y} 1$, $=3$ évaluate nds
(08 Marks)
b.

Derive Euler's equation in the standard form viz $a_{y} \overline{\mathbf{d} \mathbf{d}}\left|\begin{array}{c}\text { of } \\ \mathrm{a}_{\mathbf{y}^{\prime}}\end{array}\right|=\mathbf{0}$.
(06 Marks)
c. Find the external of the functional $\left.\quad \mathbf{1}=\boldsymbol{\sigma}^{\cdot} \quad-y^{12} \quad 2 y \sin x\right) d x$ under the end conditions
$y(0)=y(n / 2)=0$.
(06 Marks)

