

Third Semester B.E. Degree Examination, Dec.2019/Jan. 2020 Mechanics of Materials

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain principle of superposition.
(03 Marks)
b. Derive an expression for Young's Modulus (E) interms of bulk modulus (K) and Poisson's ratio (n).
(07 Marks)
c. A stepped bar is subjected to forces as shown in Fig.Q.1(c). Determine the stress induced in different portions and Net deformation in the stepped bar. Take $\mathrm{E}=2 \times 10-{ }^{-\quad .}$

- (10 Marks)

Fig.Q.1(c)

OR

2 a. Derive an expression for the total elongation of tapered bar varying diameter from d to d, subjected to axial load 'W.
(10 Marks)
b. A steel bar is placed between two copper bar, each having same area and length as the steel bar. These are rigidly connected together at a temperature of $25^{\circ} \mathrm{C}$. When the temperature is raised to $325^{\circ} \mathrm{C}$. The length of the bar is increased by 1.5 mm compute the original length and find the stresses in each bar Take Ested $=210 \mathrm{GPa}, \mathrm{E} .=100 \mathrm{GPa}$, asteet $=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$, oc,,, $=17.5 \times 10-6 /{ }^{\circ} \mathrm{C}$.

Module $\mathbf{2}_{2}$

3 a. Derive the expression for normal stress and shear stress on a plane inclined at ' A ' angle to the vertical axis in a biaxial stress system with shear stress.
(10 Marks)
b. Determine the wall thickness necessary for a thick steel cylinder shell having 200 mm inner diameter to withstand an internal pressure of 40 MPa . Permissible tensile stress in the material is lOOMPa. Also sketch the variation of hoop stress and radial stress across the thickness.
(10 Marks)

OR

4 a. A plane element subjected to stress shown in Fig.Q.4(a). Determine principal stresses, Max shear stress and their plane. Use Mohr's circle method.
(10 Marks)

Fig.Q.4(a)

b. A cylindrical thin drum 800 mm in diameter and 3 m long has a shell thickness of 10 mm , If the drum is subjected to an internal pressure of 25 bar. Calculate the change in diameter,

Module-3

5 a. Explain different types of beams and loads.
(05 Marks)
b. Draw SFD and BMD for the beam shown in Fig.Q.5(b).

Fig.Q.5(b)
(15 Marks)

OR

6 a. Prove the relations $M_{1}=\frac{E}{y}=\frac{E}{R}$ with usual notations.
(10 Marks)
b. A cantilever beam of square section $200 \mathrm{~mm} \times 200 \mathrm{rnm}, 2 \mathrm{~m}$ long just fails in bending, when a load of 20 kN is placed at its free end. A beam of the same material having a rectangular cross-section $150 \mathrm{~mm} \times 300 \mathrm{~mm}$. Simply supported over a span of 3 m is to be used under uniformly distributed load ' W ' $\frac{\mathrm{rn}}{\mathrm{rn}}$. What can be maximum value of W ?
(10 Marks)

Module-4

GO
7 a. List all the assumptions and derive the torsion formula in standard form
(10 Marks)
b. A hollow shaft having diameter ratio of 0.4 , transmits 562.5 kW power at 100 rpm . Determine cross-sectional dimensions of the shaft, if shear stress is not exceed 60 MPa and twist in length of 2.5 m should not exceed 1.3°. Maximum torque transmitted is 25% higher than average torque $\mathrm{G}=90 \mathrm{GPa}$.
(10 Marks)

OR

8 a. Derive an expression for critical load in a column subjected to compressive load, when one end is fixed and the other end free.
(10 Marks)
b. A 1.5 m long column has a circular cross-section of 50 mm diameter. One end of the column is fixed and other end is free. Take factor of safety as 3, calculate the safe load using
i) Rankine's formula, take yield stress $=560 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{a}=\frac{1}{1600}$
ii) Euler's formula, Young's modulus $=1.2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(10 Marko

Module-5

9 a. Explain Factor of safety.
(04 Marks)
b. Explain maximum normal stress theory and maximum shear stress theory.
(08 Marks)
c. A bar of 5 m long and 50 mm diameter hangs vertically and it has collar attached to it to the lower end rigidly. Determine maximum stresses induced when
i) Weight of 3000 N falls through a height of 100 mm on the collar.
ii) Weight of 30 kN falls through a height of 10 mm on the collar. Take $=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(08 Marks)

OR

10 a. Derive the expression for strain energy due to shear stress and bending.
(10 Marks)
b. The stresses induced at a critical point in a machine component made of steel $(\mathrm{a},=380 \mathrm{MPa})$ are as follows: $\mathbf{a}_{\mathrm{x}}=100 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}, \mathbf{a}_{\mathrm{v}}=40 \frac{\mathrm{~N}}{\text { Mac_ }} \mathrm{T}_{\mathrm{xy}}=80 \mathrm{~N} \quad$ le ate factor of safety by

