

www.FirstRanker.com

17MAT41

Fourth Semester B.E. Degree Examination, Dec.2019/Jan.2020 Engineering Mathematics _ IV

Time: 3 hrs.

USN

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. From Taylor's series method, find y(0.1), considering upto fourth degree term if y(x) satisfying the equation $dy = x - y^2$, y(0) = 1. (06 Marks)
 - b. Using Runge-Kutta method of fourth order $\frac{dY}{dx} + y = 2x$ at x = 1.1 given that y = 3 at x = 1 initially. (07 Marks)
 - c. If 2ex y, y(0) = 2, y(0.1) = 2.010, y(0.2) = 2.040 and y(0.3) = 2.090, find y(0.4) correct upto four decimal places by using Milne's predictor-corrector formula. (07 Marks)
- 2 a. Using modified Euler's method find y at x = 0.2 given $\frac{d}{dx} = 3x + \frac{1}{2}y$ with y(0) = 1 taking h = 0.1. (06 Marks)

OR

- h = 0.1. b. Given $\frac{dy}{dx} + y + zy^2 = 0$ and y(0) = 1, y(0.1) = 0.9008, y(0.2) = 0.8066, y(0.3) = 0.722. Evaluate y(0.4) by Adams-Bashforth method. (07 Marks)
- c. Using Runge-Kutta method of fourth order, find y(0.2) for the equation $dx = \frac{dy y x}{y+x}$ y(0) = 1 taking h = 0.2. (07 Marks)

Module-2

3 a. Apply Milne's method to compute y(0.8) given that $\frac{d^2y}{dx^2} = 1 - 2y \frac{1}{d_x}^{1}$ and the following table of initial values.

Х	0	0.2	0.4	0.6
У	0	0.02	0.0795	0.1762
y'	0	0.1996	0.3937	0.5689

(06 Marks)

- b. Express $f(x) = x^4 + 3x^3 x^2 + 5x 2$ in terms of Legendre polynomials.
- c. Obtain the series solution of Bessel's differential equation $x^2y'' + xy' + (x + n)y = 0$ leading to .1,,(x). (07 Marks)

www.FirstRanker.com

www.FirstRanker.com

	OR	
4	a. Given $y'' - xy' - y = 0$ with the initial conditions $y(0) = 1$, $y'(0) = 0$, compute	
	y'(0.2) using fourth order Runge-Kutta method.	(06 Marks)
	b. Prove $J_{-1ii}(k) = \frac{1}{1 - \frac{2}{7EX}} \cos x$.	(07 Marks)
	c. Prove the Rodfigues formula P (x) = $\frac{ \mathbf{d'y} ^2}{2'' n! dx''} (x^2 - 1)^{n}$	(07 Marks)
	Module_3	
5	a. Derive Cauchy-Riemann equations in Cartesian form. b. Discuss the transformation $w = z^{-1}$.	(06 Marks) (07 Marks)
	c. By using Cauchy's residue theorem, evaluate e^{22} (z +1)(z + 2) dz if C is the circle Iz	
		(07 Marks)
	OR	
6	a. Prove that $a'' + a''' = 41f'(z)1''$	(06 Marks)
	b. State and prove Cauchy's integral formula.	(07 Marks)
	c. Find the bilinear transformation which maps $z = 00$, i, 0 into $w = -1$, -i, 1.	(07 Marks)
	Module_4	
7	a. Find the mean and standard of Poisson distribution.	(06 Marks)
	b. In an examination 7% of students score less than 35 marks and 89% of the students	
	less than 60 marks. Find the mean and standard deviation if the marks are distributed given $A(L_{22}G_{2}) = 0.20$ and $A(L_{27}G_{2}) = 0.42$	•
	distributed given $A(I.2263) = 0.39$ and $A(1.4757) = 0.43$ c. The joint probability distributio	(07 Marks)
	Determine:	

Determine:

- i) Marginal distribution of X and Y
- Covariance of X and Y ii)
- iii) Correlation of X and Y

OR

A random variable X has the following robability function: 8 a.

•	as the following footability function.								
	Х	0	1	2	3	4	5	6	7
	P(x)	0	Κ	2k	2k	3k	K^2	$2k^2$	$7k^2+k$

Find K and evaluate P(x 6) P(3 < x 6).

- b. The probability that a pen manufactured by a factory be defective is 1/10. If 12 such pens are manufactured, what is the probability that
 - Exactly 2 are defective i)
 - ii) Atleast two are defective
 - iii) None of them are defective.
- c. The length of telephone conversation in a booth has been exponential distribution and found on an average to be 5 minutes. Find the probability that a random call made
 - -i) Ends in less than 5 minutes
 - Between 5 and 10 minutes FirstRanker.com ii)

(07 Marks)

(07 Marks)

(07 Marks)

(06 Marks)

www.FirstRanker.com

17MAT41

Module-5

- 9 a. A die is thrown 9000 times and a throw of 3 or 4 was observed 3240 times. Show that the dia cannot be regarded as an unbiased die.
 (06 Marks)
 - b. A group of 10 boys fed on diet A and another group of 8 boys fed on a different disk B for a period of 6 months recorded the following increase in weight (lbs):

	Diet A: 5 6 8 1 12 4 3 9 6 10 Diet B: 2 3 6 8 10 1 2 8 10										
	Diet A:	5	6	8	1	12	4	3	9	6	10
	Diet B:	2	3	6	8	10	1	2	8		
Test whether diets A aid B differ significantly $t.05 = 2.12$ at 16d1											

(07 Marks)

(07 Marks)

- c. Find the unique fixed probability vector for the regular stochastic matrix $0 \quad 1 \quad 0$
 - A= 1/6 1/2 1/3 0 2/3 1/3

10

OR

- Define the terms: a. Null hypothesis i) Type-I and Type-II error **Confidence** limits iii) (06 Marks) 1/20 1/20 The t.p.m. of a Markov chain is given by P =1 h. 0 . Find the fined probabilities 1/41/21/4vector. (07 Marks)
- c. Two boys B1 and B2 and two girls G1 and G2 are throwing ball from one to another. Each boy throws the ball to the Other boy with probability 1/2 and to each girl with probability 1/4. On the other hand each girl throws the ball to each boy with probability 1/2 and never to the other girl. In the long run how often does each receive the ball? (07 Marks)

www.Fire

www.FirstRanker.com