www.FirstRanker.com

www.FirstRanker.com

Roll No. Total No. of Pages: 02

Total No. of Questions: 09

B.Sc Non Medical (2018 & Onwards) (Sem.-1)

MECHANICS-I

Subject Code: BSNM-104-18

M.Code: 75745

Time: 3 Hrs. Max. Marks: 50

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying ONE marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a) State Newton's laws of motion.
- b) State the principle of conservation of momentum.
- c) Differentiate between stable and unstable equilibrium.
- d) Show that work done by a conservative force is zero.
- e) How the momentum and energy conservation laws hold good in case of collision of particles which stick together.
- f) Derive the relationship between torque and angular momentum.
- g) Write the expression for angular momentum of a system of particles.
- h) Write the expressions for moment of inertia and radius of gyration for a system of particles.
- i) Define Hooke's law of elasticity and explain its validity.
- j) A load of 2kg produces an extension of 1mm in a wire of 3meters in length and 1mm in diameter. Calculate the Young's modulus of wire.

1 M-75745 (S105)-1453

SECTION-B

- 2. Discuss rocket propulsion and derive the expression for velocity of rocket at any instant.
- 3. Define a projectile and derive the equation of trajectory for a projectile fired at an angle with the horizontal.
- 4. A body of mass 5kg initially at rest is subjected to a force of 20N. What is the kinetic energy acquired by the body at the end of 10s?
- 5. Prove the law of conservation of energy by using conversion of gravitational potential energy into kinetic energy for freely falling body.
- 6. Differentiate between elastic and inelastic scattering. Derive the expression for cross section of elastic scattering.

SECTION-C

- 7. a) State and prove theorem of parallel axis of moment of inertial.
 - b) Derive the expression for moment of inertia of a rectangular bar about an axis passing through the midpoint of one side and perpendicular to its plane.
- 8. a) Define Elasticity and discuss all moduli of elasticity.
 - b) Derive the expression for work done in stretching and twisting a wire.
- 9. Derive the expression for the determination of momentum of inertia and torsional rigidity of an irregular body using Torsion pendulum.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 M-75745 (S105)-1453