Roll No. \square
Total No. of Questions: 11

B.Sc. (Honours) Chemistry (2019 Batch)
 (Sem.-1)
 MATHS-I (CALCULUS-I)
 Subject Code : UC-BSHM-104-19
 M.Code : 77226

Time: 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
2. SECTION-B contains EIGHT questions carrying FOUR marks each and students have to attempt any SIX questions.
3. SECTION-C will comprise of two compulsory questions with internal choice in both these questions. Each question carries TEN marks.

SECTION-A

1. Attempt the following :
a) Determine the value of k for which the following function is continuous at $x=3$.

$$
f(x)= \begin{cases}\frac{x^{2}-9}{x-3} ; & x \neq 3 \\ k ; & x=3\end{cases}
$$

b) State Lagrange's Mean Value Theorem.
c) Evaluate $\int x e^{2 x} d x$.
d) Find the value of the integral $\int_{-\pi / 2}^{\pi / 2} \sin ^{7} x d x$.
e) If $u=x^{m} y^{n}$, find the total derivative of u.
f) If $\mathrm{Z}=f(x+c t)+\phi(x-c t)$, prove that $\frac{\partial^{2} z}{\partial t^{2}}=c^{2} \frac{\partial^{2} z}{\partial x^{2}}$
g) Evaluate $\int_{0}^{3} \int_{0}^{1}\left(x^{2}+3 y^{2}\right) d y d x$.
h) If $x=r \cos \theta$ and $y=r \sin \theta$, find the value of $\frac{\partial(x, y)}{\partial(r, \theta)}$.

SECTION-B

2. Find the derivative of the function $x^{\sin x}$.
3. Find the interval in which the function $f(x)=2 x^{3}+9 x^{2}+12 x+20$ is increasing.
4. Evaluate the integral $\int \frac{2 x+1}{(x+1)(x-2)} d x$.
5. Evaluate : $\int_{0}^{1 / \sqrt{2}} \frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{3 / 2}} d x$.
6. Let be a $f(x, y)$ function defined as $f(x, y)=\left\{\begin{array}{ll}\frac{x y}{x^{2}+y^{2}} ; & (x, y) \neq(0,0) \\ 0 \quad ; & (x, y)=(0,0)\end{array}\right.$. Show that $f(x, y)$ is discontinuous at $(0,0)$.
7. If $T=\frac{x^{3} y^{3}}{x^{3}+y^{3}}$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3 T$.
8. Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$ by changing the order of integration.
9. Find the area bounded by the circle $x^{2}+y^{2}=p^{2}$ using polar coordinates.

SECTION-C

10. Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.

Or

Using definite integrals, find the area bounded by the curves $y^{2}=4 a x$ and $x^{2}=4 a y$.
11. Find the dimensions of the rectangular box, open at the top, of maximum capacity whose surface is $432 \mathrm{~cm}^{2}$.

Or
Using triple integration, find the volume of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

