Subject Code: R13102/R13

Set No - 1

I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 MATHEMATICS-I

(Common to All Branches)
Time: $\mathbf{3}$ hours

Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B *****

PART-A

1.(i) Find the orthogonal trajectories of the curve $r=a(1+\cos \theta)$.
(ii) If $x=r \sin \theta \cos \varphi, y=r \sin \theta \sin \varphi, z=r \cos \theta$, find $\frac{\partial(r, \theta, \varphi)}{\partial(x, y, z)}$, given that $\frac{\partial(x, y, z)}{\partial(r, \theta, \varphi)}=r^{2} \sin \theta$.
(iii) Find the Laplace transform of $f(t)=\left\{\begin{array}{cc}t, 0<t<1 \\ 0, & t>1\end{array}\right.$ using Heaviside function.
(iv) Let the heat conduction in a thin metallic bar of length L is governed by the equation $\frac{\partial u}{\partial t}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}, \mathrm{t}>0$. If both ends of the bar are held at constant temperature zero and the bar is initially has temperature $f(x)$, find the temperature $u(x, t)$.
(v) Solve $\mathrm{p}^{2}+\mathrm{pq}=\mathrm{z}^{2}$.
(vi) Find $\frac{1}{D^{2}-4 D+4} x^{2} \sin x$.

PART- B

2.(a) Solve $y\left(2 x^{2}-x y+1\right) d x+(x-y) d y=0$
(b) Find the complete solution of $y^{\prime \prime}+2 y=x^{2} e^{3 x}+e^{x} \cos 2 x$
3.(a) Solve $\frac{d y}{d x}+x \sin 2 y=x^{3} \cos ^{2} y$
(b) Find the solution of $\frac{d^{2} y}{d x^{2}}+4 y=\sin 3 x+\cos 2 x$.
4.(a) Find the Laplace transform of $f(t)=\frac{\cos a t-\cos b t}{t}$.
(b) If $x=\sqrt{v w}, y=\sqrt{u w}, z=\sqrt{u v}$ and $u=r \sin \theta \cos \varphi, v=r \sin \theta \sin \varphi$ and $w=r \cos \theta$, find $\frac{\partial(x, y, z)}{\partial(r, \theta, \varphi)}$.
5.(a) Expand $f(x, y)=e^{y} \ln (1+x)$ in powers of x and y using MacLaurin's Series
(b) Solve $y^{\prime \prime}-8 y^{\prime}+15 y=9 t e^{2 t}, y(0)=5$ and $y^{\prime}(0)=10$ using Laplace transforms
6.(a) Solve $(y+x z) p-(x+y z) q=x^{2}-y^{2}$.
(b) Solve the partial differential equation $\mathrm{px}+\mathrm{qy}=1$.
7.(a) Find the partial differential equation of all spheres whose centers lie on z - axis.
(b) Find the solution of the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}$, if the initial deflection is

$$
f(x)=\left\{\begin{array}{lc}
\frac{2 k}{l} x & \text { if } 0<x<l / 2 \tag{8+8}\\
\frac{2 k}{l}(l-x) & \text { if } \frac{l}{2}<x<l
\end{array} \text { and initial velocity equal to } 0 .\right.
$$

Subject Code: R13102/R13

Set No - 2

I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 MATHEMATICS-I

(Common to All Branches)
Time: $\mathbf{3}$ hours

Question Paper Consists of Part-A and Part-B

Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(i) Find the complete solution of $\left(D^{4}+16\right) y=0$.
(ii) If $x=r \cos \theta, y=r \sin \theta, z=z$, find $\frac{\partial(r, \theta, z)}{\partial(x, y, z)}$, given that $\frac{\partial(x, y, z)}{\partial(r, \theta, z)}=r$.
(iii) Solve $x^{2} p^{2}+y^{2} q^{2}=z^{2}$.
(iv) Find the solution, by Laplace transform method, of the integro-differential equation

$$
y^{\prime}+3 y+2 \int_{0}^{t} y(t) d t=t
$$

(v) Find the differential equation of the orthogonal trajectories for the family of parabola through the origin and foci on y-axis.
(vi) Find the solution of wave equation in one dimension using the method of separation of variables.

PART-B

$[3+3+4+4+4+4]$
2.(a) Solve $y\left(y^{2}-2 x^{2}\right) d x+x\left(2 y^{2}-x^{2}\right) d y \in 0$
(b) Find the complete solution of $y^{\prime \prime}+5 y^{\prime}-6 y^{\circ}=\sin 4 x \sin x$.
3.(a) Solve $\cos x d y=y(\sin x-y) d x$.
(b) Find the solution of $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+3 y=2 x e^{3 x}+3 e^{x} \cos 2 x$.
4.(a) Find the Laplace transform of $f(t)=\int_{0}^{t} e^{-u} \cos u d u$.
(b) Find the shortest distance from origin to the surface $x y z^{2}=2$.
5.(a) Find $\frac{\partial(u, v)}{\partial(r, \theta)}$ if $u=2 a x y$ and $v=a\left(x^{2}-y^{2}\right)$, where $x=r \cos \theta$ and $y=r \sin \theta$.
(b) Solve $y^{\prime \prime}-8 y^{\prime}+15 y=9 t e^{2 t}, y(0)=5$ and $y^{\prime}(0)=10$ using Laplace transforms
6.(a) Form the partial differential equation by eliminating the arbitrary function from $x y z=f(x+y+z)$.
(b) Find the solution of $\left(D^{2}-D D^{\prime}-2{D^{\prime}}^{2}\right) z=(y-1) e^{x}$, where $D=\frac{\partial}{\partial x}$ and $D^{\prime}=\frac{\partial}{\partial y}$.
7.(a) Solve the partial differential equation $x z p+y z q=x y$.
(b) Find the temperature in a bar of length 1 which is perfectly insulated laterally and whose ends O and A are kept at $0^{\circ} \mathrm{C}$, given that the initial temperature at any point P of the rod is given by $f(x)$.

Page 1 of 1

Subject Code: R13102/R13

Set No - 3

I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 MATHEMATICS-I

(Common to All Branches)
Time: 3 hours
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(i) Find the dimensions of rectangular box of maximum capacity whose surface area is S .
(ii) Find the orthogonal trajectories of the family of curves $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
(iii) A generator having emf 100 volts is connected in series with a 10 ohm resistor and an inductor of 2 henries. If the switch is closed at a time $t=0$, find the current at time $t>0$.
(iv) Find the Laplace transform of $f(t)=\left\{\begin{array}{cc}t, & 0<t<1 \\ 0, & t>1\end{array}\right.$ using Heaviside function.
(v) Solve $\mathrm{pq}+\mathrm{qx}=\mathrm{y}$.
(vi) Find the solution of $2 x \frac{\partial z}{\partial x}-3 y \frac{\partial z}{\partial y}=0$ by the method of separation of variables.

PART- B

2.(a) Solve $y(1+x y) d x+x(1-x y) d y=0$
(b) Find the complete solution of $y^{\prime \prime}+4 y=e^{x} \sin ^{2} x$.
3.(a) Solve $2 x y^{\prime}+y=\frac{2 x^{2}}{y^{3}}, y(1)=2$.
(b) Find the solution of $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}-5 y=e^{2 x}+3 \cos (4 x+3)$.
4.(a) Find the Laplace transform of $f(t)=t e^{-2 t} \cos t$.
(b) Find the maxima and minima of $x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x$.
5.(a) Expand $f(x, y)=e^{x y}$ in powers of ($\left.\mathrm{x}-1\right)$ and ($\left.\mathrm{y}-1\right)$.
(b) Solve $y^{\prime \prime}+7 y^{\prime}+10 y=4 e^{-3 t}, y(0)=0$ and $y^{\prime}(0)=-1$ using Laplace transforms.
6.(a) Form the partial differential equation by eliminating the arbitrary constants ' a ' and ' b ' from $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$.
(b) Find the solution of $\left(4 D^{2}+12 D D^{\prime}+9 D^{\prime 2}\right) z=e^{3 x-2 y}$, where $D=\frac{\partial}{\partial x}$ and $D^{\prime}=\frac{\partial}{\partial y}$.
7.(a) Solve the partial differential equation $p \tan x+q \tan y=\tan z$.
(b) A tightly stretched string with fixed end points $\mathrm{x}=0$ and $\mathrm{x}=1$ is initially in a position given by $y=y_{0} \sin ^{3} \frac{\pi x}{l}$. If it is released from rest from this position, find the displacement $y(x, t)$.

Page 1 of 1

Subject Code: R13102/R13

Set No - 4

I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 MATHEMATICS-I

(Common to All Branches)
Time: 3 hours
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(i) Find the distance from the centre at which the velocity in simple harmonic motion will be $1 / 3$ rd of the maximum.
(ii) Find a point with in a triangle such that the sum of the squares of its distances from the three vertices is minimum.
(iii) Find the solution, by Laplace transform method, of the integro-differential equation $y^{\prime}+4 y=\int_{0}^{t} y(t) d t, y(0)=0$.
(iv) Uranium disintegrates at a rate proportional to the amount present at that time. If M and N grams of Uranium that rae present at times T_{1} and T_{2} respectively, find the half life of Uranium.
(v) Find the complete solution of $\left(D^{3}-3 D^{2} D^{\prime}+3 D D^{\prime 2}-D^{\prime 3}\right) z=0$.
(vi) Solve $z^{2}=1+p^{2}+q^{2}$.
$[4+4+4+4+3+3]$

PART-B

2.(a) Solve $\left(3 y^{2}+4 x y-x\right) d x+x(x+2 y) d y=0$
(b) Find the solution of $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}-6 y=\sin 4 x \cos x$.
3.(a) Find the complete solution of $y^{\prime \prime}+2 y=x^{2} e^{3 x}+e^{x} \cos 2 x$.
(b) Solve $x z^{\prime}+z \log z=z(\log z)^{2}$.
4.(a) Find the Laplace transform of $f(t)=t e^{2 t} \cos 2 t$.
(b) If $u=\sin ^{-1}\left(\frac{x^{3}+y^{3}}{\sqrt{x}+\sqrt{y}}\right)$, prove that $x u_{x}+y u_{y}=\frac{5}{2} \tan u$.
5.(a) If $w=(y-z)(z-x)(x-y)$, find the value of $\frac{\partial w}{\partial x}+\frac{\partial w}{\partial y}+\frac{\partial w}{\partial z}$.
(b) Solve $y^{\prime \prime}+2 y^{\prime}+5 y=e^{-t} \sin t, y(0)=0$ and $y^{\prime}(0)=1$ using Laplace transforms.
6.(a) Form the partial differential equation by eliminating the arbitrary constants ' a ' and ' b ' from $z=a x+b y+a^{2}+b^{2}$.
(b) Using method of separation of variables, solve $u_{x t}=e^{-t} \cos x$ with $u(x, 0)=u(0, t)=0$.
7.(a) Find the temperature in a thin metal rod of length L, with both ends insulated and with initial temperature in the rod is $\sin \left(\frac{\pi x}{L}\right)$.
(b) Solve the partial differential equation $p \mathrm{x}^{2}+\mathrm{qy}^{2}=\mathrm{z}^{2}$.

