

www.FirstRanker.com

Subject Code: R13102/R13 I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 MATHEMATICS-I

(Common to All Branches)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B**

PART-A

- 1.(i) Find the orthogonal trajectories of the curve $r = a(1 + \cos \theta)$.
 - (ii) If $x = rsin\theta cos\varphi$, $y = rsin\theta sin\varphi$, $z = r cos\theta$, find $\frac{\partial(r,\theta,\varphi)}{\partial(x,y,z)}$, given that $\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)} = r^2 sin\theta$.
 - (iii) Find the Laplace transform of $f(t) = \begin{cases} t, & 0 < t < 1 \\ 0, & t > 1 \end{cases}$ using Heaviside function.
 - (iv) Let the heat conduction in a thin metallic bar of length L is governed by the equation $\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$, t > 0. If both ends of the bar are held at constant temperature zero and the bar is initially has temperature f(x), find the temperature u(x,t).

(v) Solve
$$p^2 + pq = z^2$$
.
(vi) Find $\frac{1}{D^2 - 4D + 4}x^2 sinx$. [4+4+4+3+3]

<u>PART- B</u>

2.(a) Solve
$$y(2x^2 - xy + 1)dx + (x - y)dy = 0$$

(b) Find the complete solution of $y'' + 2y = x^2e^{3x} + e^x \cos 2x$ [8+8]

3.(a) Solve $\frac{dy}{dx} + xsin2y = x^3cos^2y$

(b) Find the solution of
$$\frac{d^2y}{dx^2} + 4y = \sin 3x + \cos 2x$$
. [8+8]

4.(a) Find the Laplace transform of
$$f(t) = \frac{\cos at - \cos bt}{t}$$
.

(b) If
$$x = \sqrt{vw}, y = \sqrt{uw}, z = \sqrt{uv}$$
 and
 $u = r\sin\theta\cos\varphi, v = r\sin\theta\sin\varphi$ and $w = r\cos\theta$, find $\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)}$. [8+8]

5.(a) Expand
$$f(x, y) = e^{y} \ln(1 + x)$$
 in powers of x and y using MacLaurin's Series

(b) Solve
$$y'' - 8y' + 15y = 9te^{2t}$$
, $y(0) = 5$ and $y'(0) = 10$ using Laplace transforms
[8+8]

6.(a) Solve
$$(y + xz)p - (x + yz)q = x^2 - y^2$$
.
(b) Solve the partial differential equation $px+qy=1$. [8+8]

7.(a) Find the partial differential equation of all spheres whose centers lie on z- axis.

(b) Find the solution of the wave equation
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$$
, if the initial deflection is

$$f(x) = \begin{cases} \frac{2\kappa}{l} x & \text{if } 0 < x < l/2\\ \frac{2k}{l}(l-x) & \text{if } \frac{l}{2} < x < l \end{cases} \text{ and initial velocity equal to } 0.$$
[8+8]

Page 1 of 1

www.FirstRanker.com

Set No - 2 Subject Code: R13102/R13 I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 MATHEMATICS-I

(Common to All Branches)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of Part-A and Part-B Answering the question in **Part-A** is Compulsory, Three Questions should be answered from Part-B *****

PART-A

- Find the complete solution of $(D^4 + 16)y = 0$. 1.(i)
 - (ii) If $x = r\cos\theta$, $y = r\sin\theta$, z = z, find $\frac{\partial(r, \theta, z)}{\partial(x, y, z)}$, given that $\frac{\partial(x, y, z)}{\partial(r, \theta, z)} = r$.
 - (iii) Solve $x^2p^2 + y^2q^2 = z^2$.
 - (iv) Find the solution, by Laplace transform method, of the integro-differential equation $y' + 3y + 2\int_0^t y(t)dt = t$
 - Find the differential equation of the orthogonal trajectories for the family of parabola (v) through the origin and foci on y-axis.
 - (vi) Find the solution of wave equation in one dimension using the method of separation of variables.

[8+8]

[8+8]

- 2.(a)
- (b)
- Solve $y(y^2 2x^2)dx + x(2y^2 x^2)dy = 0$ Find the complete solution of y'' + 5y' 6y = sin4x sinx. Solve $\cos x \, dy = y(\sin x y)dx$. Find the solution of $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 3y = 2xe^{3x} + 3e^x \cos 2x$. [8+8] 3.(a) (b)

4.(a) Find the Laplace transform of
$$f(t) = \int_0^t e^{-u} \cos u \, du$$
.

Find the shortest distance from origin to the surface $xyz^2 = 2$. (b)

5.(a) Find
$$\frac{\partial(u,v)}{\partial(r,\theta)}$$
 if $u = 2axy$ and $v = a(x^2 - y^2)$, where $x = r\cos\theta$ and $y = r\sin\theta$.

(b) Solve
$$y'' - 8y' + 15y = 9te^{2t}$$
, $y(0) = 5$ and $y'(0) = 10$ using Laplace transforms
[8+8]

6.(a) Form the partial differential equation by eliminating the arbitrary function from xyz = f(x + y + z).

(b) Find the solution of
$$(D^2 - DD' - 2D'^2)z = (y - 1)e^x$$
, where $D = \frac{\partial}{\partial x}$ and $D' = \frac{\partial}{\partial y}$.
[8+8]

- 7.(a) Solve the partial differential equation xzp + yzq = xy.
 - (b) Find the temperature in a bar of length l which is perfectly insulated laterally and whose ends O and A are kept at 0°C, given that the initial temperature at any point P of the rod is given by f(x).

[8+8]

www.FirstRanker.com

Subject Code: R13102/R13 I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 MATHEMATICS-I

(Common to All Branches)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B**

PART-A

- 1.(i) Find the dimensions of rectangular box of maximum capacity whose surface area is S.
 - (ii) Find the orthogonal trajectories of the family of curves $x^{2/3} + y^{2/3} = a^{2/3}$.
 - (iii) A generator having emf 100 volts is connected in series with a 10 ohm resistor and an inductor of 2 henries. If the switch is closed at a time t =0, find the current at time t>0.

(iv) Find the Laplace transform of
$$f(t) = \begin{cases} t, & 0 < t < 1 \\ 0, & t > 1 \end{cases}$$
 using Heaviside function.

- (v) Solve pq+qx = y.
- (vi) Find the solution of $2x \frac{\partial z}{\partial x} 3y \frac{\partial z}{\partial y} = 0$ by the method of separation of variables.

[4+4+4+3+3]

[8+8]

[8+8]

[8+8]

PART-B

2.(a) Solve
$$y(1 + xy)dx + x(1 - xy)dy = 0$$

(b) Find the complete solution of $y'' + 4y = e^x sin^2 x$

3.(a) Solve
$$2x y' + y = \frac{2x^2}{y^3}$$
, $y(1) = 2$.
(b) Find the solution of $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} - 5y = e^{2x} + 3\cos(4x + 3)$.

4.(a) Find the Laplace transform of
$$f(t) = te^{-2t}cos t$$
.
(b) Find the maxima and minima of $x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$.

5.(a) Expand
$$f(x, y) = e^{xy}$$
 in powers of (x-1) and (y-1).
(b) Solve $y'' + 7y' + 10 y = 4e^{-3t}$, $y(0) = 0$ and $y'(0) = -1$ using Laplace transforms.
[8+8]

6.(a) Form the partial differential equation by eliminating the arbitrary constants 'a' and 'b' from $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.

(b) Find the solution of
$$(4D^2 + 12DD' + 9{D'}^2)z = e^{3x-2y}$$
, where $D = \frac{\partial}{\partial x}$ and $D' = \frac{\partial}{\partial y}$.
[8+8]

- 7.(a) Solve the partial differential equation $p \tan x + q \tan y = \tan z$.
 - (b) A tightly stretched string with fixed end points x=0 and x=1 is initially in a position given by $y = y_0 sin^3 \frac{\pi x}{l}$. If it is released from rest from this position, find the displacement y(x, t).

[8+8]

Page 1 of 1

www.FirstRanker.com

Subject Code: R13102/R13 I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 MATHEMATICS-I

(Common to All Branches)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B**

PART-A

- 1.(i) Find the distance from the centre at which the velocity in simple harmonic motion will be 1/3rd of the maximum.
 - (ii) Find a point with in a triangle such that the sum of the squares of its distances from the three vertices is minimum.
 - (iii) Find the solution, by Laplace transform method, of the integro-differential equation $y' + 4y = \int_0^t y(t)dt$, y(0) = 0.
 - (iv) Uranium disintegrates at a rate proportional to the amount present at that time. If M and N grams of Uranium that rae present at times T_1 and T_2 respectively, find the half life of Uranium.
- (v) Find the complete solution of $(D^3 3D^2D' + 3_DD'^2 D'^3)z = 0.$
- (vi) Solve $z^2 = 1 + p^2 + q^2$.

[4+4+4+4+3+3]

2.(a) Solve $(3y^2 + 4xy - x)dx + x(x + 2y)dy = 0$ (b) Find the solution of $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 6y = sin4x cosx$.

3.(a) Find the complete solution of $y'' + 2y = x^2 e^{3x} + e^x \cos 2x$. (b) Solve $x z' + z \log z = z (\log z)^2$.

4.(a) Find the Laplace transform of
$$f(t) = te^{2t}cos 2t$$
.
(b) If $u = sin^{-1}(\frac{x^3+y^3}{\sqrt{x}+\sqrt{y}})$, prove that $xu_x + yu_y = \frac{5}{2} \tan u$

[8+8]

[8+8]

5.(a) If w = (y - z)(z - x)(x - y), find the value of $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z}$.

(b) Solve
$$y'' + 2y' + 5y = e^{-t} \sin t$$
, $y(0) = 0$ and $y'(0) = 1$ using Laplace transforms.
[8+8]

6.(a) Form the partial differential equation by eliminating the arbitrary constants 'a' and 'b' from $z = ax + by + a^2 + b^2$.

(b) Using method of separation of variables, solve
$$u_{xt} = e^{-t} cosx$$
 with $u(x, 0) = u(0, t) = 0$.
[8+8]

- 7.(a) Find the temperature in a thin metal rod of length L, with both ends insulated and with initial temperature in the rod is $sin(\frac{\pi x}{L})$.
 - (b) Solve the partial differential equation $px^2 + qy^2 = z^2$.

[8+8]