Code No: R10102/R10

Set No. 1

Abstract

I B.Tech I Semester Supplementary Examinations, Oct/Nov 2013 MATHEMATICS-I (Common to Civil Engineering, Electrical \& Electronics Engineering, Mechanical Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Chemical Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours
Max Marks:
75

> Answer any FIVE Questions
> All Questions carry equal marks

1. (a)Solve $3 y^{1}+x y=x y^{-2}$
(b) A body kept in air with temperature $25^{\circ} \mathrm{C}$ cools from $140^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ in 20 minutes. when will the body cools down to $35^{\circ} \mathrm{C} \quad[8+7]$
2. (a) Explain the procedure to find Complete solution of second order non homogeneous differential equation with constant coefficients.
(b) Solve $\left(D^{2}-4\right) y=x \operatorname{Sin} \lambda x$
$[8+7]$
3. (a)A rectangular box open at the top is to ha maximum capacity whose surface area is 108 square ft . Find the dimensionspo the rectangular box.
(b)Find the points on the ellipsoid $\frac{x^{2}}{4}+\frac{z^{2}}{4}=1$ that are closest and farthest from the point $(2,0,-1)$.
[8+7]
4. (a) Trace the curve $\mathrm{x}=\mathrm{a}(\theta+\infty(\theta), \mathrm{y}=\mathrm{a}(1-\cos \theta)$.
(b) Trace the curve $x^{2 / 3}+y^{2}\left(\mathbb{C}=a^{2 / 3}\right.$
[8+7]
5. (a)Find the length of the afre of the curve $y=\log (\sec x)$ from $x=0$ to $\frac{\pi}{3}$. (b) Find the perimete the loop of the curve $3 a y^{2}=x(x-a)^{2}$.
6. (a) Evaluate $\int_{0}^{4} \int_{y^{2} / 4}^{3} \frac{y}{x^{2}+y^{2}} d x d y$.
(b) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\overline{1-x^{2}-y^{2}}} x y z \mathrm{~d} z \mathrm{dy} \mathrm{dx} . \quad[8+7]$
7. (a)Prove that $\operatorname{div}(\bar{r} / \mathrm{r})=2 / \mathrm{r}$.
(b) Show that $\mathrm{A}=\left(6 x y+z^{3}\right) i+\left(3 x^{2}-z\right) j+\left(3 x^{2} z^{2}-y\right) k$ is irrotational. Find ϕ such that $\mathrm{A}=\nabla \phi$. Prove that div curl $\mathrm{f}=0 \quad[8+7]$
8. (a)If $f=y i+z j+x k$, find the circulation of f round the curve C, where C is the circle $x^{2}+y^{2}=0, z=0$.
(b) If $\mathrm{f}=\left(\mathrm{x}+\mathrm{y}^{2}\right) \mathrm{i}-2 \mathrm{xj}+2 \mathrm{yzk}$, evaluate $\int_{s} f . N d s$ where S is the surface of the plane $2 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=6$ in the first octant.
$[8+7]$

I B.Tech I Semester Supplementary Examinations, Oct/Nov 2013 MATHEMATICS-I
 (Common to Civil Engineering, Electrical \& Electronics Engineering, Mechanical Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Chemical Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours
Max Marks:

> Answer any FIVE Questions
> All Questions carry equal marks

1. (a) Solve $(y \log x-2) y d x=x d y$
(b) Find the orthogonal trajectory of the family of curves $r=\frac{2 a}{(1+\operatorname{Cos} \theta)}$, where ' a ' is a parameter
$[8+7]$
2. (a) Solve $\left(D^{2}-4 D+13\right) y=e^{2 x}$
(b) Solve $\left(D^{2}-3 D+2\right) y=\operatorname{Cosh} x$
$[8+7]$
3. (a) Find the dimensions of a open rectangular tank of maximum capacity whose surface area is 54 square feet
(b) In a right angled triangle ABC with $\angle R .90^{\circ}$, find the maximum of $\cos \mathrm{A} \cos \mathrm{B}$ $\cos \mathrm{C}$.
4. (a) Trace the curve $r^{2}=a^{2} \cos 2 \theta$.
(b) Trace the curve $\mathrm{x}=\mathrm{a}(\theta+$, $1 \times 2 \mathrm{c}, \mathrm{y}=\mathrm{a}(1+\cos \theta)$. $[8+7]$
5. (a) Find the surface of thesthen generated by the revolution of cardioid $r=a(1-\cos \theta)$ about the in $\& i a l$ line
(b) Find the surface of solid generated by the revolution of the ellipse $x^{2}+4 y^{2}=$ 16 about its major N. $[8+7]$
6. (a)Evaluate $\iint x y d x d y$ over the positive Quadrant of the circle $x^{2}+y^{2}=a^{2}$.
(b)Evaluate $\iiint_{V}(x y+y z+z x) d x$ dy dz where V is the region of space bound
by $x=0, x=1, y=0, y=2, z=0, z=3 . \quad[8+7]$
7. (a)Find the angle between the normals to the surface $x y=z^{2}$ at the points $(4,1,2)$ and $(3,3,-3)$.
(b) Prove that $\operatorname{div}\left(\mathrm{r}^{n} \bar{\gamma}\right)=(\mathrm{n}+3) \mathrm{r}^{n}$

8+7]
8. (a)If $\mathrm{f}=3 \mathrm{xy} \mathrm{i}-\mathrm{y}^{2} \mathrm{j}$, evaluate $\int_{C} f . d r$ where C is the curve $\mathrm{y}=2 \mathrm{x}^{2}$, in xy plane from $(0,0)$ to $(1,2)$.
(b) Evaluate $\int_{s} f . N d s$, where $\mathrm{f}=18 \mathrm{zi}-12 \mathrm{j}+3 \mathrm{yk}$ and S is the part of the plane $2 \mathrm{x}+3 \mathrm{y}+6 \mathrm{z}=12$ located in first octant. $[8+7]$

I B.Tech I Semester Supplementary Examinations, Oct/Nov 2013 MATHEMATICS-I
 (Common to Civil Engineering, Electrical \& Electronics Engineering, Mechanical Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Chemical Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours
Max Marks:

> Answer any FIVE Questions
> All Questions carry equal marks

1. (a)Solve $3 y^{1}+x y=x y^{-2}$
(b) A body kept in air with temperature $25^{\circ} \mathrm{C}$ cools from $140^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ in 20 minutes. when will the body cools down to $35^{\circ} \mathrm{C} \quad[8+7]$
2. (a)Solve $\left(D^{2}+a^{2}\right) y=\operatorname{Cos} a x$
(b) Solve $(D-2)^{3} y=e^{2 x} \quad[8+7]$
3. (a)If $u=e^{x y z}$ then find $\frac{\partial^{3} u}{\partial x \partial u \partial z}$.
(b) Find the Jacobian of transformation from 3BCartesian coordinates to spherical polar coordinates
$[8+7]$
4. (a) Trace the curve $\mathrm{x}=\mathrm{a}(\theta+\sin \theta)$, $\mathrm{O}_{\mathrm{a}}(1-\cos \theta)$
(b) Trace the curve $x^{2 / 3}+y^{2 / 3}=a^{2 /} \quad[8+7]$
5. (a) Find the volume of the solidenerated by revolving one arc of the Cycloid $x=a$ $(1-\sin t), y=a(1-\cos t)$ abort ${ }^{2}$ base.
(b) Prove that the curved \&urface area of a sphere of radius r intercepted between two parallel planes at andistance a and b from the centre of the Sphere is $2 \pi r(b-$ a) when $b>a$.
[8+7]
6. (a)Evaluate $\iint x y d x d y$ over the positive Quadrant of the circle $x^{2}+y^{2}=a^{2}$.
(b)Evaluate $\iiint_{V}(x y+y z+z x) d x d y d z$ where V is the region of space bound
by $x=0, x=1, y=0, y=2, z=0, z=3 . \quad[8+7]$
7. (a)Find the angle of intersection of the spheres $x^{2}+y^{2}+z^{2}=4$ and $z=x^{2}+y^{2}$ +3 at the point $(2,-1,1)$.
(b) Prove that div grad $\mathrm{r}^{n}=\mathrm{n}(\mathrm{n}+1) \mathrm{r}^{n-2}$. $[8+7]$
8. (a) Show that the area of the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ is $\pi a b$
(b) If $\mathrm{f}=\left(2 \mathrm{x}^{2}-3 z\right) \mathrm{i}-2 \mathrm{xyj}-4 \mathrm{xzk}$, evaluate (a) $\int_{v} \nabla \cdot f d V$ and
(b) $\int_{v} \nabla \times f d V$ where V is the closed region bounded by $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0,2 \mathrm{x}$ $+2 \mathrm{y}+\mathrm{z}=4$.
[8+7]

I B.Tech I Semester Supplementary Examinations, Oct/Nov 2013 MATHEMATICS-I
 (Common to Civil Engineering, Electrical \& Electronics Engineering, Mechanical Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Chemical Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours
Max Marks:

> Answer any FIVE Questions
> All Questions carry equal marks

1. (a) Solve $y\left(2 x^{2} y^{2}+x y\right) d x-x\left(x^{2} y^{2}-x y\right) d y=0$
(b) The number N of bacteria in a culture grew at a rate proportional to N . The number becomes 3 times of original (initial) in 2 hours. Then what is the time required when the number reaches to 100 times of its original?
2. (a) Solve $y^{11}+4 y^{1}-12 y=e^{2 x}-3 \operatorname{Sin} 2 x$
(b) Solve $\left(D^{3}-1\right) y=0$
$[8+7]$
3. (a)If $u=e^{x y z}$ then find $\frac{\partial^{3} u}{\partial x \partial y \partial z}$
(b) Find the Jacobian of transformation fores cordinates to spherical polar coordinates
4. (a) Trace the curve $x=2 \cos ^{3} t, 2 \sin ^{3} t$
(b) Trace the curve $y^{3}=x$.
5. (a) Find the surface of tholid generated by the revolution of cardioid $\mathrm{r}=\mathrm{a}$ (1$\cos \theta)$ about the initial 1 Ne:
(b) Find the surface he solid generated by the revolution of the ellipse $x^{2}+4 y^{2}=$ 16 about its MajoNxis. $[8+7]$
6. (a)Evaluate $\iint x y d x d y$ over the positive Quadrant of the circle $x^{2}+y^{2}=a^{2}$.
(b)Evaluate $\iiint_{V}(x y+y z+z x) d x d y d z$ where V is the region of space bound
by $x=0, x=1, y=0, y=2, z=0, z=3 . \quad[8+7]$
7. (a) Prove that $\nabla \times(\nabla \times \mathrm{A})=\nabla(\nabla \cdot \mathrm{A})-\nabla^{2} \mathrm{~A}$
(b) If $\mathrm{f}=\mathrm{x}^{2} \mathrm{yz}, \mathrm{g}=\mathrm{xy}-3 \mathrm{z}^{2}$ then find $\operatorname{div}(\operatorname{grad} \mathrm{f} \times \operatorname{grad} \mathrm{g}) \quad[8+7]$
8. Verify divergence theorem for $\mathrm{F}=\mathrm{x}^{2} \mathrm{i}+\mathrm{y}^{2} \mathrm{j}+\mathrm{z}^{2} \mathrm{k}$ over the surface S of the solid cut off by the plane $x+y+z=a$ in the first octant.
[15]
