FACULTY OF PHARMACY
Pharm. D. I Year (Instant) Examination, January 2014

Subject: Remedial Mathematics

Max.Marks: 70
Time: 3 Hours
Note: Answer all questions from Part A. Answer any five questions from Part B.

$$
\text { PART - A (10 x } 2 \text { = } 20 \text { Marks) }
$$

1 If $A=\left[\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right]$ write A^{2}.
2 If $\left[\begin{array}{ll}2 & 3 \\ 3 & 0\end{array}\right]=\left[\begin{array}{ll}x & y^{2} \\ 3 & 0\end{array}\right]$, Find the values of x and y.
3 Eliminate ' θ ' from the equations $x=a \operatorname{Sec}^{n} \theta, y=b \tan ^{n} \theta$.
4 Find the equation to the line passing through $(2,4)$ and parallel to x-axis.
5 Find the equation to the circle whose one end point is $(2,4)$ and mid point is $(0,0)$.
6 Find the integral of $\int \frac{x^{2}}{1+x^{2}} d x$.
7 Define the order and degree of the differential equation and hence find the order and degree from the d.e. $\frac{d^{3} y}{d x^{3}}+\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\frac{d y}{d x}+y=0$
8 Evaluate $\underset{x \rightarrow 2}{\operatorname{Lt}} \frac{x^{2}-4}{x-2}$.
9 Find the Laplace transform sinat.
10 If $u=\log \left(x^{2}-y^{2}\right)$ then find $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$.

$$
\text { PART - B }(5 \times 10=50 \text { Marks })
$$

11 (a) If $A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right]$ and $B=\left[\begin{array}{ll}x & 1 \\ y & -1\end{array}\right]$ and $(A+B)^{2}=A^{2}+B^{2}$. Find x and y.
(b) If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then show that $A^{2}-(a+d) A=(b c-a d)$ I.

12 (a) If $\tan 20^{\circ}=\mathrm{K}$, show that $\frac{\operatorname{Tan} 250^{\circ}+\operatorname{Tan} 340^{\circ}}{\operatorname{Tan} 200^{\circ}-\operatorname{Tan} 110^{\circ}}=\frac{1-\mathrm{K}^{2}}{1+\mathrm{K}^{2}}$.
(b) Prove that $\frac{1}{\operatorname{Cos} 290^{\circ}}+\frac{1}{\sqrt{3} \operatorname{Sin} 250^{\circ}}=\frac{4}{\sqrt{3}}$.

13 (a) Show that $\underset{\theta \rightarrow 0}{\operatorname{Lt} \frac{\tan a \theta}{\sin b \theta}}=\frac{a}{b}$.
(b) If $u=\tan ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$ then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial x}=\frac{1}{2} \sin 2 u$.

14 (a) Evaluate $\int_{0}^{a} \frac{d x}{1+\sqrt{x}}$
(b) Evaluate $\int \sqrt{\left(\mathrm{a}^{2}-\mathrm{x}^{2}\right)} \mathrm{dx}$.

15 (a) Solve $e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$.
(b) Solve $\left(D^{2}+1\right) y=e^{x}+\sin x+x^{2}$.

16 (a) If $\mathrm{L}[\mathrm{F}(\mathrm{t})]=\mathrm{F}(\mathrm{s})$ then prove that $\mathrm{L}\left(\mathrm{e}^{\mathrm{at}} \mathrm{F}(\mathrm{t})\right]=\mathrm{F}(\mathrm{s}-\mathrm{a})$.
(b) Find the Laplace transform of $\mathrm{e}^{2 \mathrm{t}}+\mathrm{t}^{2}+\mathrm{t}$ sint.

17 (a) Verify $\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial x \partial y}$ when z is equal to $x^{3}+y^{3}-3 a x y$.
(b) Solve $\left(x y^{2}+x\right) d x+\left(y x^{2}+y\right) d y=0$.

18 (a) Find the equation to the circle which passes through the point $(4,1),(6,5)$ and has the centre on the line $4 x+y-16=0$.
(b) Find the equation of the ellipse whose focus is $(0,3)$, eccentricity is $\frac{3}{5}$ and directrix is $3 y-25=0$.

