

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VI EXAMINATION - SUMMER 2020

Subject Code: 2160912 Date:02/11/2020

Subject Name: Design of DC Machines and Transformer

Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	Define the following words related to transformer design: (I) Window space factor (II) Staking factor (III) Circumscribing Circle	03
	(b) (c)	State factor to be considered for selection of specific loading. Determine the main dimensions of core and yoke for a 200 KVA, 50 Hz, 1-phase core type transformer. Use the following data:	04 07
		Window space factor=0.32, Current density=3A/mm ² , Maximum flux density=1.1 Wb/m ² , Voltage per turn=14 V, Stacking factor=0.9.Net iron area=0.56d ² , where d is the diameter of circumscribing circle. The cruciform core is used with the distance between adjacent limbs=1.6 times width of core lamination. The width of the largest stamping is 0.85d.	
Q.2	(a)	Give the comparison between core and shell type transformers.	03
	(b)	Differentiate between Radial Forces and Axial Forces in transformer windings.	04
	(c)	Derive the expression of leakage reactance of a 3-phase core type distribution transformer.	07
	(c)	Write a short note on the classification of insulating materials.	07
Q.3	(a)	Explain the importance of stepped core in the transformer.	03
	(b)	Why tapping's are generally provided on HV winding?	04
	(c)	What is design optimization? Derive necessary condition for designing a transformer with minimum cost. OR	07
Q.3	(a)	How to reduce the demagnetizing effects and cross-magnetizing effect?	03
	(b)	Give the comparison between the power transformer and distribution transformer.	04
	(c)	A 200 kVA, 6600/440volts, 50Hz, three phase core type transformer has the following design data: Max. flux density: 1.3 wb/m², EMF/Turn: 10 volts, Stacking factor: 0.9, Window space factor: 0.3, Current density: 2.5 A/mm². Overall width and overall height are the same. If three stepped core is used to determine overall dimensions.	07
Q.4	(a) (b)	Explain the heating of electrical machines. Explain how the following factors influence the main dimensions of a DC Machine.	03 04

stran	(c)	(1) Peripheral speed(2) Pirstracktweep adjacent segment FirstRan Derive the output equation of a 3-phase core type transformer. OR	ker.com 07
Q.4	(a) (b)	Explain Staggering of Brushes in a D.C. machine. Why Circular Coils are preferred in Transformer?	03 04
	(c)	Explain various factors affecting the selection of airgap length in the D.C. machine.	07
Q.5	(a)	Explain the disadvantages of having higher specific electric loading in DC Machine Design.	03
	(b)	Which type of material is preferred for core laminations in transformer? What is the advantage of using a mitred joint in the core construction?	04
	(c)	Calculate the diameter and length of the armature for a 7.5kW, 4 poles, 1000 r.p.m, 220 V shunt motor. Given: full load efficiency= 0.83; maximum gap flux density=0.9 Wb/m²: specific electric loading=30,000 ampere conductors per meter; field form factor = 0.7. Assume that the maximum efficiency occurs at full load and field current is 2.5% of rated current. The pole face is square. OR	07
Q.5	(a) (b) (c)	Discuss the necessity of inter-pole in D. C. machine design. Explain the losses at the commutator surface. Design is required for a 50 kW, 4 poles, 600 r.p.m. D.C. shunt generator, the full load terminal voltage being 220 V. If the maximum gap density is 0.83 Wb/m² and the armature ampere conductors per meter are 30,000, calculate suitable dimensions of armature core to give a square pole face. Assume that the full load armature voltage drop is 3 per cent of the rated terminal voltage and that the field current is 1 per cent of rated full load current. The ratio of pole arc to pole pitch is 0.67.	03 04 07
