

		GUJARAT TECHNOLOGICAL UNIVERSITY	
Subi	ect C	BE - SEMESTER– VI EXAMINATION – SUMMER 2020 ode: 2161101 Date:02/11/	2020
Subj	ect Na	ame: VLSI Technology & Design	
Fime: 10:30 AM TO 01:00 PMTotal MInstructions:		l arks: 70	
Instru	ctions: 1. A	ttempt all questions.	
	2. N	Take suitable assumptions wherever necessary.	
	3. Г	igures to the right mulcate fun marks.	
0.1	(-)		MARKS
Q.1	(a) (b)	Compare: Semi-custom and Full custom VLSI design style.	03
	(D)	White a short note on CMOS ring oscillator circuit.	04
	(C)	figures.	07
Q.2	(a)	Define the following terms with example: (1) Controllability (2)	03
	(b)	Observability. What is substrate higs effect? Derive the expression for the threshold	04
	(0)	voltage.	04
	(c)	Draw and discuss: The circuit diagram of domino CMOS logic gate. OR	07
	(c)	Draw and explain: CMOS implementation of D latch with two	07
0.2		inverter and two CMOS TG gates.	0.2
Q.3	(a)	avoided?	03
	(b)	Explain the energy band diagram of MOS structure at surface	04
		inversion and derive the expression for the maximum possible depth of the depletion region	
	(c)	Measured voltage and current data for a MOSFET are given below.	07
		Determine the type of the device, and calculate the parameters k_n ,	
		V _{T0} , and γ . Assume $\mathcal{O}_F = -0.3$ V.	
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
		5 5 0 433	
		3 3 3 59	
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
0.3	(a)	Draw the inverter circuit with Resistive Load. Derive critical voltage	03
	< <i>/</i>	points V_{OH} and V_{OL} for Resistive Load inverter circuit.	
	(b)	Explain the basic principles of pass transistor circuits. Also explain	04
	(n)	logic "U" and logic "I" transfer.	07
		iunction which is reverse biased with a voltage V ₁ . The doping	U/

junction, which is reverse biased with a voltage V_{bias} . The doping density of the n-type region is $N_D = 10^{19} \text{ cm}^{-3}$, and the doping density of the p-type region is $N_A = 10^{16} \text{ cm}^{-3}$. The junction area is $A=20\mu m \times 20\mu m$. Assume that the reverse bias voltage changes from 0 to -5V.

www.FirstRanker.com

- 0.4 Briefly explain working of FPGA with suitable diagram. 03 (a) Explain voltage bootstrapping in brief. 04 **(b)** (c) Consider a resistive-load inverter circuit with $V_{DD}=5V$, $k_n=20 \mu A/V^2$, 07 $V_{T0}=0.8V$, $R_L=200k\Omega$, and W/L=2. Calculate the critical voltages Vol, Voh, VIL & VIH on the VTC and find the noise margins of the circuit. OR Explain Built-in Self Test (BIST) techniques in brief. Q.4 03 (a)
 - - Write a short note on switching power dissipation of CMOS 04 **(b)** inverters.
 - (c) Consider a depletion-load inverter circuit with $V_{DD}=5V$, $V_{T0,driver}$ 07 $=1V, V_{T0,load} = -3V, (W/L)_{driver} = 2, (W/L)_{load} = 1/3, k_{n,driver} = k_{n,load} = 1/3$ 25 μ A/V², $\gamma = 0.4$ V^{1/2} and $Ø_F = -0.3$ V. Calculate the critical voltages Vol, Voh, VIL & VIH on the VTC and find the noise margins of the circuit.

Q.5 Write a short note on behavior of bistable elements. 03 (a) (b) Realize the following Boolean function: 04

- (1) F = AB + A'C' + AB'C using CMOS Transmission Gates. (2) $F = [(C+D+E)\cdot(B+A)]'$ using CMOS.
- In CMOS inverter circuit, define propagation delay τ_{PLH} and obtain 07 (c) its expression.

OR

- Q.5 Explain CMOS Transmission gate in brief. (a)
 - Draw voltage transfer characteristics of CMOS inverter and define **(b)** 04 V_{IL}, V_{IH}, V_{OL}, V_{OH}, NM_L and NM_H.
 - (c) Draw Y- Chart for VLSI design. Also list out possible physical faults, 07 electrical faults and logical faults in the circuit.

03