

www.FirstRanker.com

Enrolment.FirstRanker.com

		GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- VI EXAMINATION - SUMMER 2020	
S	ubjec	ct Code: 2161603 Date:28/10/20	020
S	ubiec	t Name: DATA COMPRESSION AND DATA RETRIVAL	
T	ime:	10:30 AM TO 01:00 PM Total Marks	s: 70
In	struct	ions:	
	1	1. Attempt all questions.	
	2	2. Make suitable assumptions wherever necessary.	
		3. Figures to the right indicate full marks.	
0.1	(a)	Define following terms:	03
×	(4)	i. Compression Ratio	
		ii. Instantaneous Code	
		iii. Prefix Code	
	(b)	What is Data Compression? Explain types of Data compression and	04
		measure of performance of data compression.	
	(c)	For symbol A, B, C, D, E, F, G and H respectively with probability 0.2,	07
		0.18, 0.16, 0.14, 0.10, 0.10, 0.08, 0.04. Find out Huffman code,	
		Source Entropy, Average Length, Code efficiency and Redundancy.	
02	(a)	Generate GOLOMB code for $m=5$ and $n=5$ to 10	03
Q.2	(a) (h)	Explain modeling and coding Explain how this will help to reduce entropy	03
	(0)	for following data.	U-I
		9.11.11.11.14.13.15.17.16.17.20.21.	
	(c)	Encode "aardvark" using Adaptive Huffman code. Derive Output string,	07
		Codes and final tree.	
		OR	
	(c)	Explain Rice code with example.	07
Q.3	(a)	Write a short note on skip pointer.	03
	(b)	Generate TUNSTALL code P(A)=0.4, P(B)=0.3, P(C)=0.2, P(D)=0.1 and n=4	04
	(a)	bits. Encode and decode DILL CATES using arithmetic coding	07
	(C)		07
03	(a)	Write a short note on Prefix Code	03
χ.υ	(b)	What is Uniquely Decodable Code? Determine whether the following	04
	()	codes are uniquely decodable or not.	•••
		i. $\{0,01,11,111\}$	
		ii. {0,10,110,111}	
		iii. {1,01,010,111}	
	(c)	Encode the sequence this bisbth using prediction with partial match (PPM).	07
Q.4	(a)	Explain Vector Quantization in detail.	03
	(b)	Encode and decode this bisb the using The Burrows Wheeler Transform	04
	(c)	Use LZ78 to encode the following string	07
		wabba#wabba#wabba#woo#woo#woo	
04		UK Differentiate between Static and Dynamic Dictionary	02
Q.4	(a) (b)	Encode I – southbijbe using Move to Front Coding	U3 04
	(U)	Encode L- solutionor using move to From Counig.	04

FirstRanker.com

www.FirstRanker.com

07

(c) Decode the following string using LZW
5 2 3 3 2 1 6 8 10 12 9 11 7 16 5 4 4 11 21 23 4
Consider the following initial dictionary

Initials	Dictionary
1	#
2	а
3	b
4	0
5	W

Q.5 Explain Tokenization. 03 (a) Explain and compare Incident matrix and Inverted index with example. 04 **(b)** Explain Lemmatization and Stemming in detail. 07 (c) OR Write a short note on stop word removal. 03 Q.5 **(a)** Explain process generating triple in all three possible cases of LZ77 04 **(b)** algorithm. Explain challenges in XML information retrieval 07 (c) ****

www.FirstRanker.com