

www.FirstRanker.com

Enrolment.FirstRanker.com

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- VI EXAMINATION - SUMMER 2020				
Subject Code: 2161903 Date:02/11/2020)20	
	Subje	ect Name: COMPUTER AIDED DESIGN		
	Time: 10:30 AM TO 01:00 PM Total Marl		ks: 70	
	Instruc	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	MADKS	
			MARKS	
Q.1	(a) (b)	Why CAD is widely used in modern manufacturing industries?Determine raster locations of a line joining two points from A(12, 12) to B(4, 2) using DDA line drawing algorithm.	03 04	
	(c)	Determine generalized parametric form of a line passing through two points using neat sketch. Find Parametric equation of line through points $A(3,-6,7)$ and $B(5,1,-4)$.	07	
Q.2	2 (a)	Why Bresenham's algorithm is superior to DDA algorithm?	03	
	(b)	Answer the following:	04	
		(i) Compare Analytic and Synthetic curves		
		(ii) Why Homogeneous coordinate transformations are used in CAD?	. –	
	(c)	Prove that the transformation matrix for reflection about the line $Y = -X$ is	07	
		equivalent to clockwise rotation by 45° followed by reflection relative to Y		
		axis and finally counter clockwise rotation by 45°.		
	(\mathbf{c})	UK Find concatenated matrix if the operations are performed as per the following	07	
	(C)	sequence.	07	
		a) Rotation through 45° counterclockwise		
		b) Translation through 5 and -8 units along the X and Y directions.		
		c) Rotations through 60° clockwise.		
Q.3	b (a)	Discuss any three properties of solid models. (Don't enlist properties only).	03	
	(b)	Explain following surfaces:	04	
		(i) Revolved surface (ii) Bezier Surface		
	(c)	A Bezier curve is to be constructed using control points P_0 (35, 30), P_1 (25,	07	
		0), P_2 (15, 25) and P_3 (5, 10). The Bezier curve is anchored at P_0 and P_3 . Find		
		the equation of the Bezier curve and plot the curve for $u = 0, 0.2, 0.4, 0.6, 0.8$		
		and 1.		
0.1			03	
Q.3) (a) (b)	Explain Constructive Solid Geometry (CSG) with sketch.	03	
	(U) (c)	Derive equation of a Hermite's cubic spline curve with two end points PO	04	
	(0)	and P1 and their tangent vectors are P_1' and P_2'	07	
04	(a)	What are the properties of the Stiffness matrix?	03	
Q. -	(h)	What is shape function? Draw a sketch for a linear shape function used in	04	
	(~)	FEM.		
	(c)	How many elements to be considered in the problem of figure 1? Determine Global stiffness matrix har elements used in the system below:	07	

www.FirstRanker.com

$E = 200 \times 10^9 \text{ N/m}^2$

Figure1 OR

- Q.4 (a) What do you mean by 'Discretization'? State precautions required during 03 discretization.
 - (b) What do you mean by 'Iso-Parametric formulation' of problems in FEM. 04
 - (c) How many elements to be considered in the problem of figure 2? DetermineO7Global stiffness matrix bar elements used in the system below:

- Q.5 (a) List applications areas of Finite Element Analysis (FEA).
 - (b) Enlist steps to be followed for solution of Structural problems using FEM.
 - (c) For one dimensional element shown in Figure 3, temperature at node 1 is 100° C and at node 2 is 40° C. Evaluate shape function associated with node 1 and node 2. Calculate temperature at point P. Assume linear shape function

- Q.5 (a) What are the types of loading acting on the structure? Give suitable 03 examples.
 - (b) Define total potential energy. State the principle of minimum potential energy. 04
 - (c) Analyze the two-members truss shown in Figure 4. Assume EA to be constant for all members. The length of each member is 5m. Area A=0.01 m² and E=210GPa. Compute nodal displacements and reactions forces. Determine stresses in each member.

03

04

07

07