

## www.FirstRanker.com www.FirstRanker.com GUJARAT TECHNOLOGICAL UNIVERSITY

**BE - SEMESTER- III EXAMINATION - SUMMER 2020** 

Subject Code: 3130005 Date:27/10/2020

**Subject Name: Complex Variables and Partial Differential Equations** 

Time: 02:30 PM TO 05:00 PM Total Marks: 70

## **Instructions:**

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

| Q.1 | (a)<br>(b)<br>(c) | If $u = x^3 - 3xy$ is find the corresponding analytic function $f(z) = u + iv$ .<br>Find the roots of the equation $z^2 - (5+i)z + 8 + i = 0$ .<br>(i) Determine and sketch the image of $ z  = 1$ under the transformation $w = z + i$ .<br>(ii) Find the real and imaginary parts of $f(z) = z^2 + 3z$ . | Marks 03 04 03 |
|-----|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Q.2 | (a)               | Evaluate $\int (x^2 - iy^2) dz$ along the parabola $y = 2x^2$ from (1,2) to (2,8).                                                                                                                                                                                                                         | 03             |
|     | <b>(b)</b>        | Find the bilinear transformation that maps the points $z = \infty, i, 0$ into $w = 0, i, \infty$ .                                                                                                                                                                                                         | 04             |
|     | (c)               | (i) Evaluate $\oint_C \frac{e^{-z}dz}{z+1}$ , where C is the circle $ z  = 1/2$ .                                                                                                                                                                                                                          | 03             |
|     |                   | (ii) Find the radius of convergence of $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} z^n$ .                                                                                                                                                                                                      | 04             |
|     | (c)               | (i) Find the fourth roots of $-1$ .                                                                                                                                                                                                                                                                        | 03             |
|     |                   | (i) Find the fourth roots of $-1$ .<br>(ii) Find the roots of $\log z = i\frac{\pi}{2}$ .                                                                                                                                                                                                                  | 04             |
| Q.3 | (a)               | Find $\oint_C \frac{1}{z^2} dz$ , where $C:  z  = 1$ .<br>For $f(z) = \frac{1}{(z-1)^2(z-3)}$ , find Residue of $f(z)$ at $z=1$ .                                                                                                                                                                          | 03             |
|     | <b>(b)</b>        | For $f(z) = \frac{1}{(z-1)^2(z-3)}$ , find Residue of $f(z)$ at $z=1$ .                                                                                                                                                                                                                                    | 04             |
|     | (c)               | Expand $f(z) = \frac{1}{(z+2)(z+4)}$ in a Laurent series for the regions $(i) z  < 2$ ,                                                                                                                                                                                                                    | 07             |
|     |                   | (ii)2 < $ z $ < 4, $(iii) z $ > 4.                                                                                                                                                                                                                                                                         |                |

## OR

- Q.3 (a) Find  $\oint_C \frac{z+4}{z^2+2z+5} dz$ , where C: |z+1| = 1.
  - (b) Evaluate using Cauchy residue theorem  $\int_C \frac{e^{2z}}{(z+1)^3} dz$ ; C:  $4x^2 + 9y^2 = 16$ .
  - (c) Expand  $f(z) = \frac{1}{z(z-1)(z-2)}$  in Laurent's series for the regions (i)|z| < 1, (ii)1 < |z| < 2, (iii)|z| > 2.



| Fi <u>ost</u> r | anke       | r solve $xp + yq = x$ - www.FirstRanker.com www.FirstRanker.com                                                                               | cdfi |
|-----------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|
|                 | <b>(b)</b> | Derive partial differential equation by eliminating the arbitrary constants $a$ and $b$ from $z = ax + by + ab$ .                             | 04   |
|                 | (c)        | (i) Solve the p.d.e. $2r + 5s + 2t = 0$ .                                                                                                     | 03   |
|                 | (-)        | (ii) Find the complete integral of $p^2 = qz$ .                                                                                               | 04   |
|                 |            | OR                                                                                                                                            |      |
| <b>Q.4</b>      | (a)        | Find the solution of $x^2p + y^2q = z^2$ .                                                                                                    | 03   |
|                 | <b>(b)</b> | Form the partial differential equation by eliminating the arbitrary function                                                                  | 04   |
|                 | . ,        | $ \phi \text{ from } z = \phi \left(\frac{y}{x}\right). $                                                                                     |      |
|                 | (c)        | (i) Solve the p.d.e. $(D^2 - D'^2 + D - D')z = 0$ .                                                                                           | 03   |
|                 |            | (ii) Solve by Charpit's method $yzp^2 - q = 0$ .                                                                                              | 04   |
| Q.5             | (a)        | Solve $(2D^2 - 5DD' + 2D'^2)z = 24(y - x)$ .                                                                                                  | 03   |
|                 | <b>(b)</b> | Solve the p.d.e. $u_x + u_y = 2(x + y)u$ using the method of separation of                                                                    | 04   |
|                 |            | variables.                                                                                                                                    |      |
|                 | <b>(c)</b> | Find the solution of the wave equation $u_{tt} = c^2 u_{xx}$ , $0 \le x \le \pi$ with the                                                     | 07   |
|                 |            | initial and boundary conditions $u(0,t) = u(\pi,t) = 0; t > 0,$<br>$u(x,0) = k(\sin x - \sin 2x), u_t(x,0) = 0; 0 \le x \le \pi. \ (c^2 = 1)$ |      |
|                 |            | $u(x,0) = k(\sin x - \sin 2x), u_t(x,0) = 0, 0 \le x \le n.  (C = 1)$ $\mathbf{OR}$                                                           |      |
| Q.5             | (a)        | Solve the p.d.e. $r + s + q - z = 0$ .                                                                                                        | 03   |
| Q.C             | (b)        | Solve $2u_x = u_t + u$ given $u(x,0) = 4e^{-3x}$ using the method of separation                                                               | 04   |
|                 | (~)        | of variables.                                                                                                                                 | ٠.   |
|                 | (c)        | Find the solution of $u_t = c^2 u_{xx}$ together with the initial and boundary                                                                | 07   |
|                 |            | conditions $u(0,t) = u(2,t) = 0; t \ge 0$ and $u(x,0) = 10; 0 \le x \le 2$ .                                                                  |      |
|                 |            | conditions $u(0,t) = u(2,t) = 0; t \ge 0$ and $u(x,0) = 10; 0 \le x \le 2$ .                                                                  |      |