

Enrolment No.

www.FirstRanker.com www.FirstRanker.com GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III EXAMINATION - SUMMER 2020

Subject Code: 3130005 Date:27/10/2020

Subject Name: Complex Variables and Partial Differential Equations

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			Marks
Q.1	(a) (b) (c)	If $u = x^3 - 3xy$ is find the corresponding analytic function $f(z) = u + iv$. Find the roots of the equation $z^2 - (5+i)z + 8 + i = 0$. (i) Determine and sketch the image of $ z = 1$ under the transformation $w = z + i$.	03 04 03
		(ii) Find the real and imaginary parts of $f(z) = z^2 + 3z$.	04
Q.2	(a)	Evaluate $\int_{C} (x^2 - iy^2) dz$ along the parabola $y = 2x^2$ from (1,2) to (2,8).	03
	(b)		04
	(c)	(i) Evaluate $\oint \frac{e^{-z}dz}{z+1}$, where C is the circle $ z = 1/2$.	03
		(ii) Find the radius of convergence of $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} z^n$.	04
	(c)	(ii) Find the roots of $\log z = i\frac{\pi}{2}$.	03 04
Q.3	(a)	Find $\oint_C \frac{1}{z^2} dz$, where $C: z = 1$.	03
	(b)	For $f(z) = \frac{1}{(z-1)^2(z-3)}$, find Residue of $f(z)$ at $z=1$.	04
	(-)	1 / 1 - 7	0.7

(c) Expand $f(z) = \frac{1}{(z+2)(z+4)}$ in a Laurent series for the regions (i)|z| < 2,

(ii)2 < |z| < 4, (iii)|z| > 4.

- Q.3 (a) Find $\oint \frac{z+4}{z^2+2z+5} dz$, where C: |z+1| = 1. 03
 - (b) Evaluate using Cauchy residue theorem $\int \frac{e^{2z}}{(z+1)^3} dz$; C: $4x^2 + 9y^2 = 16$. 04
 - (c) Expand $f(z) = \frac{1}{z(z-1)(z-2)}$ in Laurent's series for the regions 07 $(i)|z|<1,\ (ii)1<|z|<2,\ (iii)|z|>2.$

		alikei.Com	
- Witt	a nykye	r'sochoice, yq = x - www.FirstRanker.com www.FirstRanker.com	mb:
	(b)		04
		a and b from $z = ax + by + ab$.	
	(c)	(i) Solve the p.d.e. $2r + 5s + 2t = 0$.	03
		(ii) Find the complete integral of $p^2 = qz$.	04
		OR	
Q.4	(a)	Find the solution of $x^2 p + y^2 q = z^2$.	03
	(b)	Form the partial differential equation by eliminating the arbitrary function	04
		ϕ from $z = \phi \left(\frac{y}{x} \right)$.	
	(c)	(i) Solve the p.d.e. $(D^2 - D'^2 + D - D')z = 0$.	03
		(ii) Solve by Charpit's method $yzp^2 - q = 0$.	04
Q.5	(a)	Solve $(2D^2 - 5DD' + 2D'^2)z = 24(y - x)$.	03
		Solve the p.d.e. $u_x + u_y = 2(x + y)u$ using the method of separation of	04
	(~)	variables.	
	(c)		07
	(c)		0,
		initial and boundary conditions $u(0,t) = u(\pi,t) = 0; t > 0,$	
		$u(x,0) = k(\sin x - \sin 2x), u_t(x,0) = 0; 0 \le x \le \pi. \ (c^2 = 1)$	
		OR	
Q.5		Solve the p.d.e. $r + s + q - z = 0$.	03
	(b)	Solve $2u_x = u_t + u$ given $u(x,0) = 4e^{-3x}$ using the method of separation	04
		of variables.	
	(c)	Find the solution of $u_t = c^2 u_{xx}$ together with the initial and boundary	07
		conditions $u(0,t) = u(2,t) = 0; t \ge 0$ and $u(x,0) = 10; 0 \le x \le 2$.	
		Solve $2u_x = u_t + u$ given $u(x,0) = 4e^{-3x}$ using the method of separation of variables. Find the solution of $u_t = c^2 u_{xx}$ together with the initial and boundary conditions $u(0,t) = u(2,t) = 0; t \ge 0$ and $u(x,0) = 10; 0 \le x \le 2$.	