R F

		Ranker.com Enrolment No.	
		GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- III EXAMINATION - SUMMER 2020	om
		Code: 3130107 Date:27/10/2020 Name: Partial Differential Equations and Numerical Methods	
Tin	ne: 0	2:30 PM TO 05:00 PM Total Marks: 70)
Inst	2.	ns: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Use Iteration method to find the real root of the equation $x^3 + x - 1 = 0$ correct to six decimal places starting with $x_0 = 1$.	03
	(b)	Use Bisection method to find the real root of the equation $x - \cos x = 0$ correct	04
	(c)	upto four decimal places. Explain the Newton-Raphson method briefly. Also find an iterative formula for \sqrt{N} and hence find $\sqrt{7}$ correct to three decimal places.	07
Q.2	(a)	Evaluate $\int_{0}^{1} e^{x^2} dx$ by Simpson's-1/3 rule with n=10 and estimate the error.	03
	(b)	Solve the following linear system of equations by Gauss elimination method. $0 \bullet x + 8y + 2z = -7$	04
		3x + 5y + 2z = 8	
	(c)	estimate the error for the following table.	07
		x 0.5 0.6 0.7 0.8 $f(x)$ 1.127626 1.185465 1.255169 1.337435	
		OR	
	(c)	t o 12 24 36 48 60 72 84 96 108 120 v o 3.60 10.08 18.90 21.60 18.54 10.26 4.50 4.5 5.4 9.0	07
Q.3	(a)	Using Simpson's $\frac{1}{3}$ rule, find the distance travelled by the car in 2 minutes. Use Trapezoidal rule to evaluate $\int_{1}^{1} x^{3} dx$ using five subintervals.	03
	(b)	Check whether the following system is diagonally dominant or not. If not, rearrange the system and solve it using Gauss-Seidel method. 8x - 3y + 2z = 20	04

4x - 11y - z = 33

6x - 3y + 12z = 35

(c) Explain Euler's method briefly and apply it to the following initial value 07 problem by choosing h = 0.2 and hence obtain y(1.0). $\frac{dy}{dx} = x + y y(0) = 0$. Also determine the error by deriving it analytical solution.

OR

PE	irst	Ranker com order method to find the approximate value of	03
Fi	rstrank	(er's choice $y(0.2)$ given that $\frac{dy}{dy}$ www.FirstRanker.com $_{0.1}$ www.FirstRanker.c	
		dx	
	(b)	Find the Lagrange interpolating polynomial from the following data	04
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(\cdot)	Derive Secant iterative method from the Newton-Raphson method and use it	07
	(c)	to find the root of the equation $\cos x - xe^x = 0$ correct to four decimal places.	07
0	.4 (a)	$(x^2 - yz)p + (y^2 - xy)q = z^2 - xy.$	03
×.	(b)		04
	(0)	Solve $\frac{\partial^2 z}{\partial x^2} + z = 0$ given that when $x = 0, z = e^y$ and $\frac{\partial z}{\partial x} = 1$.	
	(c)	Obtain the solution of following one-dimensional Wave equation together with following initial and boundary conditions by the method of separation of variables.	07
		$\frac{\partial^2 u}{\partial r^2} = c^2 \frac{\partial^2 u}{\partial r^2}$	
		er ea	
		$u(0,t) = u(l,t) = 0 \forall t > 0$ u(x,0) = f(x) for 0 < x < l	
		$u_{x,0} = g(x)$ for $0 < x < l$	
		$u_t(x,0) = g(x) \text{ for } 0 < x < t$	
Q	.4 (a)	$pz - qz = z^2 + (x + y)^2$.	03
			04
		$\frac{\partial^3 z}{\partial x^3} - 3 \frac{\partial^3 z}{\partial x^2 \partial y} + 4 \frac{\partial^3 z}{\partial y^3} = e^{x+2y}.$	
	(c)		07
		sides by the method of separation of variables.	
		$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$	
		$u(0,t) = u(l,t) = 0 \ \forall t > 0$	
		$\overline{\partial t} = c^{-} \overline{\partial x^{2}}$ $u(0,t) = u(l,t) = 0 \forall t > 0$ $u(x,0) = f(x) \text{ for } 0 < x < l$ $p^{2} - q^{2} = x - y$	
Q	.5 (a)		03
	(b)		04
		Solve the given equation $\frac{\partial x}{\partial x} = 2 \frac{\partial t}{\partial t} + u$ given that $u(x,0) = 6e^{-t}$.	
	(c)	Obtain the solution of following one-dimensional heat equation with insulated ends by the method of separation of variables.	07
		$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial r^2}$	
		$u_x(0,t) = u_x(l,t) = 0 \forall t > 0$	
		u(x,0) = f(x) for $0 < x < l$	
		OR	
Q	.5 (a)	$z^2(p^2+q^2+1)=a^2,$	03
	(b)	Using method least squares, find the best fit straight line for the following data.	04
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(c)	Obtain the solution following two-dimensional Laplace equation.	07
		$u_{xx} + u_{yy} = 0$	
		$u(x,0) = u(x,\infty) = u(a,y) = 0$	
		u(x,0) = f(x)	
