

www.FirstRanker.com www.FirstRanker.com GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III EXAMINATION - SUMMER 2020

Subject Code: 3130107 Date:27/10/2020

Subject Name: Partial Differential Equations and Numerical Methods

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Use Iteration method to find the real root of the equation $x^3 + x 1 = 0$ correct to six decimal places starting with $x_0 = 1$.
 - (b) Use Bisection method to find the real root of the equation $x \cos x = 0$ correct upto four decimal places.
 - (c) Explain the Newton-Raphson method briefly. Also find an iterative formula for \sqrt{N} and hence find $\sqrt{7}$ correct to three decimal places.
- Q.2 (a) Evaluate $\int_{0}^{1} e^{x^2} dx$ by Simpson's-1/3 rule with n=10 and estimate the error.
 - (b) Solve the following linear system of equations by Gauss elimination method. $0 \cdot x + 8y + 2z = -7$ 3x + 5y + 2z = 8 6x + 2y + 8z = 26
 - (c) Compute $\cosh(0.56)$ using Newton's forward difference formula and also estimate the error for the following table.

Х	0.5	0.6	0.7	0.8
f(x)	1.127626	1.185465	1.255169	1.337435

(c) The speed, v meters per second, of a car, t seconds after it starts, is show in the following table.

t	0	12	24	36	48	60	72	84	96	108	120
v	0	3.60	10.08	18.90	21.60	18.54	10.26	4.50	4.5	5.4	9.0

Using Simpson's $\frac{1}{3}$ rule, find the distance travelled by the car in 2 minutes.

- Q.3 (a) Use Trapezoidal rule to evaluate $\int_{0}^{1} x^{3} dx$ using five subintervals.
 - (b) Check whether the following system is diagonally dominant or not. If not, rearrange the system and solve it using Gauss-Seidel method.

$$8x - 3y + 2z = 20$$
$$4x - 11y - z = 33$$

$$6x - 3y + 12z = 35$$

(c) Explain Euler's method briefly and apply it to the following initial value problem by choosing h = 0.2 and hence obtain y(1.0). $\frac{dy}{dx} = x + y | y(0) = 0$.

Also determine the error by deriving it analytical solution.

OR

04

y(0.2) given that

 $\frac{dy}{dx}$ www.FigstRanker.com_{0.1}

www.FirstRanker.com

(b) Find the Lagrange interpolating polynomial from the following data

This the Lagrange interpolating polynomial from the following data								
x	0	1	4	5				
f(x)	1	3	24	39				

- (c) Derive Secant iterative method from the Newton-Raphson method and use it to find the root of the equation $\cos x xe^x = 0$ correct to four decimal places.
- **Q.4** (a) $(x^2 yz)p + (y^2 xy)q = z^2 xy$.
 - Solve $\frac{\partial^2 z}{\partial x^2} + z = 0$ given that when $x = 0, z = e^y$ and $\frac{\partial z}{\partial x} = 1$.
 - (c) Obtain the solution of following one-dimensional Wave equation together with following initial and boundary conditions by the method of separation of variables.

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

$$u(0,t) = u(l,t) = 0 \ \forall t > 0$$

$$u(x,0) = f(x) \text{ for } 0 < x < l$$

$$u_*(x,0) = g(x) \text{ for } 0 < x < l$$

OR

- **Q.4** (a) $pz qz = z^2 + (x + y)^2$.
 - **(b)** $\frac{\partial^3 z}{\partial x^3} 3 \frac{\partial^3 z}{\partial x^2 \partial y} + 4 \frac{\partial^3 z}{\partial y^3} = e^{x+2y}.$
 - (c) Obtain the solution of following one-dimensional heat equation with insulated sides by the method of separation of variables.

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$

$$u(0,t) = u(l,t) = 0 \ \forall t > 0$$

$$u(x,0) = f(x) \text{ for } 0 < x < l$$

- **Q.5** (a) $p^2 q^2 = x y$
 - (b) Solve the given equation $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ given that $u(x,0) = 6e^{-3x}$.
 - (c) Obtain the solution of following one-dimensional heat equation with insulated ends by the method of separation of variables.

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$

$$u_x(0,t) = u_x(l,t) = 0 \,\forall t > 0$$

$$u(x,0) = f(x) \text{ for } 0 < x < l$$

OR

- **Q.5** (a) $z^2(p^2+q^2+1)=a^2$,
 - (b) Using method least squares, find the best fit straight line for the following data.

•	esing memo	a reast square	es, ima die eest in straight ime for the following date					
	X	1	2	3	4	5		
	У	1	3	5	6	5		

(c) Obtain the solution following two-dimensional Laplace equation. 07

$$u_{xx} + u_{yy} = 0$$

 $u(x,0) = u(x,\infty) = u(a, y) = 0$
 $u(x,0) = f(x)$

03

04