

Enrolment No.

www.FirstRanker.com www.FirstRanker.com **GUJARAT TECHNOLOGICAL UNIVERSITY**

BE - SEMESTER- III EXAMINATION - SUMMER 2020 Subject Code: 3130109 Date:02/11/2020

Subject Name: Thermodynamics for Aeronautical Engineering Time: 02:30 PM TO 05:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Marks

Q.1	(a)	What do you understand by Vapour power cycles?	03
	(b)	What do you mean by Critical Point? Discuss.	04
	(c)	Explain Carnot Cycle and different processes with	07
		schematic and Also represent it on a p-V and T-s	
•••	$\langle \rangle$	diagrams.	0.2
Q.2	(a)	State and explain Globs-Dalton's law.	03
	(b)	How does regeneration affect the efficiency of a	04
	(a)	Brayton cycle, and now does it accomplish it?	07
	(C)	Derive the general energy equation and reduce it for	07
		boiler	
	(c)	A domestic food freezer maintains a temperature of -	07
	(C)	15° C The ambient air temperature is 30° C If heat	07
		leaks into the freezer at the continuous rate of 1.75	
		kJ/s what is the least power necessary to pump this	
		heat our continuously?	
0.3	(a)	Derive MAXWELL's equations.	03
C	(b)	State the difference between Air-breathing engine	04
		and Non-air breathing engine in jet propulsion.	
	(c)	Express the overall efficiency of steam power plant	07
		as the product of boiler, turbine, generator and cycle	
		efficiencies.	
		OR	
Q.3	(a)	List different components use in jet propulsion	03
		engine in sequence.	
	(b)	Explain the followings:	04
		1. Microscopic and macroscopic point of view	
	(-)	3. Intensive and extensive properties	07
	(C)	with the help of p-v and 1-s diagram, show that for the same maximum measure and temperature of the	07
		the same maximum pressure and temperature of the	
		cycle and the same heat rejection, η_{Diesel}	
		$>\eta_{\text{Dual}}>\eta_{\text{Otto}}$.	
Q.4	(a)	State the principle of increase of entropy. List the four	03
	(1)	application of entropy principle.	
	(b)	What is the principal of jet propulsion?	04
	(C)	prossure for dissel cycle	07
		OR	
0.4	(a)	Compare Kelvin-Plank and Clausius statement of second	03
Y 11	(4)	law of thermodynamics.	

FirstRanker comhermodynamic system. Differentiate 04 ranker's choice between open system closed system and an isolated irstRanker.com system. With neat sketch explains Otto Cycle in detail also derive (c) 07 expression for efficiency. (a) Prove that $C_P - C_V = R$. Q.5 03 (b) An engine working on the Otto cycle is supplied with 04 air at 0.1 Mpa, 35^oC.The compression ratio is 8.Heat supplied is 2100 kJ/kg. Calculate the cycle efficiency. (c) With neat sketch explain Brayton Cycle in detail. 07 OR Write limitation of the first law of thermodynamics. 0.5 03 (a) (b) With neat sketch show comparison Carnot and Rankine 04 cycle. A Carnot engine absorbs 200 J of heat from a 07 (c) reservoir at the temperature of the normal boiling point of water and rejects heat to reservoir at the temperature of the triple point of water. Find the heat rejected, the work done by the engine and the thermal efficiency.

www.firstRanker.com