GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III EXAMINATION - SUMMER 2020
Subject Code: 3131704
Date:02/11/2020
Subject Name: DIGITAL ELECTRONICS
Time: 02:30 PM TO 05:00 PM
Total Marks: 70 Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
MARKS
Q. 1 (a) Design a logic circuits for AND,OR and NOT gate using only 03NAND gates.
(b) What is the difference between demultiplexer and multiplexer ? 04Explain with necessary diagram and truth table.
(c) Explain D flip flop in detail with circuit diagram and truth table 07
Q. 2 (a) Derive the SOP expression for following term 03 $\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{ABC} \mathrm{C}^{\prime}+\mathrm{AB}^{\prime} \mathrm{CD}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{AB}$
(b) Explain binary to gray and gray to binary conversion with 04circuit diagram and truth table.
(c) Minimize the following function using tabulation method: 07$\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,1,2,8,10,14,15)$
OR
(c) Design a logic circuit for half and full subtraction circuits with 07
K-map equations and truth table.
Q. 3 (a) Convert the following numbers to decimal: 03
$(10101.101)_{2},(330.4)_{8},(\mathrm{~A} 325)_{16}$
(b) Construct 3×8 decoders with diagram and necessary truth table. 04
(c) Explain following terms with example 07
1) Inter register-transfer operation
2) Arithmetic micro operation
3) Shift micro operation
4) Logic micro operation
OR
Q. 3 (a) Draw the circuit of 3 input TTL(Transistor Transistor Logic) 03NAND gate and explain its operation.
(b) Explain working of 4-bit binary ripple counter. 04
(c) Simplify the following equation using K-map and 07 implement using logic gates:
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,1,2,3,5,7,8,9,10,12,13)$
Q. 4 (a) Explain BCD adder with diagram and truth table 03
(b) Explain 1's and 2's complement with example 04
(c) Explain 2-bit UP synchronous counter with K-map 07 equations and circuit diagramOR
Q. 4 (a) Write short note on PLA. 03
(b) Reduce the expression $\mathrm{A}+\mathrm{B}\left[\mathrm{AC}+\left(\mathrm{B}+\mathrm{C}^{\prime}\right) \mathrm{D}\right]=\mathrm{A}+\mathrm{BD}$ 04
(c) With neat sketch explain the operation of clocked RS flip flop 07 with NAND and NOR gates.
(b) Explain 2 bit magnitude comparator with necessary diagram and equation.
(c) List out different types of memories used in digital logic 07 circuits and define them.

OR

Q. 5 (a) Explain meaning of following micro operations

1) $T_{1}: A+B^{\prime}+1$
2) $T_{2}: A \wedge B$
3) $T_{3}: \operatorname{shr} A$
(b) Explain BUS transfer logic for two registers
(c) Design a logic circuit with JK flip-flop flip flop for the given state sequence with necessary K-map equation

Present state	Next state
000	001
001	010
010	011
011	100
100	101
101	000

