

Enrolment No._

www.FirstRanker.com www.FirstRanker.com GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III EXAMINATION - SUMMER 2020

Subject Code: 3131705

Date:27/10/2020

Subject Name: Dynamics of Linear Systems Time: 02:30 PM TO 05:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Marks

04

- Q.1 (a) Explain continuous-time and discrete-time signals with 03 suitable example.
 - (b) For each of the following input-output relationships, determine whether the corresponding system is linear, time invariant or both.

1.
$$y(t) = t^2 x(t-1)$$

- 2. y[n] = x[n+1] x[n-1]
- (c) What is time-variant and time-invariant system? Determine causality and stability of the following discrete-time systems with justification. Consider y[n] is the system output and x[n] is the system input.

1.
$$y[n] = x[-n]$$

2. $y[n] = x[n - 2] - 2x[n - 8]$

Q.2 (a) Explain LTI systems with and without memory. 03

(b) A linear time-invariant system is characterized by its impulse 04 response $h[n] = \left(\frac{1}{2}\right)^n u(n)$.

Determine energy density spectrum of the output signal when the

(c) Compute and plot the convolution y[n] = x[n] * h[n], where

$$x[n] = \left(\frac{1}{4}\right)^n u(n).$$

07

$$x[n] = \begin{pmatrix} 1 \\ 3 \end{pmatrix}^n$$
 and $h[n] = u[n - 1].$

system is excited by the signal

- OR
- (c) Explain commutative and distributive property of a LTI 07 system.

For $x(t) = 1 + \sin w_0 t + 2\cos w_0 t + \cos\left(2w_0 t + \frac{\pi}{4}\right)$ 03

Determine Fourier series coefficient using complex exponential representation.

- (b) Discuss applications of frequency-selective filters. 04
- (c) Discuss the properties of continuous-time Fourier series. 07

www.FirstRanker.com

OR

Q.3 (a) Each of the two sequences $x_1[n]$ and $x_2[n]$ has a period N = 4, and the corresponding Fourier series coefficients are specified as $x_1[n] \longleftrightarrow a_k$ and $x_2[n] \longleftrightarrow b_k$

Where.

$$a_0 = a_3 = \frac{1}{2}a_1 = \frac{1}{2}a_2 = 1$$
 and $b_0 = b_1 = b_2 = b_3 = 1$. Using the

multiplication property, determine the Fourier series coefficients c_k for the signal $g[n] = x_1[n] x_2[n]$.

- (b) Discuss applications of frequency-shaping filters. 04 Determine whether each of the following statements is true or 07
- false. Justify your answers. (c)
 - 1. An odd and imaginary signal always has an odd and imaginary Fourier transform.
 - 2. The convolution of an odd Fourier transform with an even Fourier transform is always odd.
- 0.4 (a) Explain time reversal and linearity property for the discrete 03 time Fourier transforms.
 - Determine the Fourier transform for $-\pi \leq w < \pi$ for the 04 **(b)** periodic signal $x(n) = \sin\left(\frac{\pi}{3}n + \frac{\pi}{4}\right)$

(c) Consider a discrete-time LTI system with impulse response 07
$$h(n) = \left(\frac{1}{2}\right)^n u(n).$$

Use Fourier transforms to determine the response for the input

$$x(n) = \left(\frac{3}{4}\right)^n u(n).$$

- Explain differentiation and integration property for the **Q.4** (a) 03 continuous time Fourier transforms.
 - (b) Determine the Fourier transform of periodic signal 04 $x(t) = 1 + \cos\left(6\pi t + \frac{\pi}{8}\right)$
 - Compute the Fourier transform of each of the following 07 (c) signals:

1.
$$x[n] = u[n-2] - u[n-6]$$

2. $x[n] = \left(\frac{1}{2}\right)^{-n} u[-n-1]$

- Q.5 (a) Determine the Laplace transform and the associated region of 03 convergence for $x(t) = e^{-2t}u(t) + e^{-3t}u(t)$.
 - (b) Determine the function of time x(t), for the following Laplace 04 transforms and their associated regions of convergence: $\Re e\{s\}>0.$
 - (c) Explain properties of the Z-transform. 07

www.FirstRanker.com

OR

Q.5 (a) Find Z-transform and region of convergence of **03**
$$x(n) = 7 \left(\frac{1}{3}\right)^n u(n) - 6 \left(\frac{1}{2}\right)^n u(n).$$

(b) Find inverse Z-transform for $X(z) = \log(1 + az^{-1}), |z| > |a|$. 04

(c) Consider the system function corresponding to causal LTI 07 systems: $H(z) = \frac{1}{(1 - z^{-1} + \frac{1}{z}z^{-2})(1 - \frac{2}{z}z^{-1} + \frac{1}{z}z^{-2})}$.

$$(1-z^{-1}+\frac{1}{4}z^{-2})(1-\frac{2}{3}z^{-1}+\frac{1}{9}z^{-2})$$

- 1. Draw a direct-form block diagram.
- 2. Draw a block diagram that corresponds to the cascade connection of two second-order block diagrams. Each second-order block diagram should be in direct form.

www.firstRanker.com