

Enrolment No.

www.FirstRanker.com GUJARAT TECHNOLOGICAL UNIVERSITY

www.FirstRanker.com

BE - SEMESTER- III EXAMINATION - SUMMER 2020

Subject Code: 3131705 Date: 27/10/2020

Subject Name: Dynamics of Linear Systems

Total Marks: 70 Time: 02:30 PM TO 05:00 PM

Instructions:

- Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- Figures to the right indicate full marks.

Marks

- O.1 (a) Explain continuous-time and discrete-time signals with 03 suitable example.
 - (b) For each of the following input-output relationships, 04determine whether the corresponding system is linear, time invariant or both.
 - 1. $y(t) = t^2 x(t-1)$
 - 2. y[n] = x[n+1] x[n-1]
 - (c) What is time-variant and time-invariant system? Determine 07 causality and stability of the following discrete-time systems with justification. Consider y[n] is the system output and x[n] is the system input.
 - y[n] = x[-n]
 - 2. y[n] = x[n-2] 2x[n-8]
- Q.2 (a) Explain LTI systems with and without memory. 03
 - (b) A linear time-invariant system is characterized by its impulse 04 response $h[n] = \left(\frac{1}{2}\right)^n u(n)$.

Determine energy density spectrum of the output signal when the

- $x[n] = \left(\frac{1}{4}\right)^n u(n).$ system is excited by the signal
- (c) Compute and plot the convolution y[n] = x[n] * h[n], where 07 $x[n] = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and h[n] = u[n-1].

- (c) Explain commutative and distributive property of a LTI 07 system.
- Q.3 (a) For $x(t) = 1 + \sin w_0 t + 2\cos w_0 t + \cos \left(2w_0 t + \frac{\pi}{4}\right)$ 03

Determine Fourier series coefficient using complex exponential representation.

- (b) Discuss applications of frequency-selective filters. 04
- (c) Discuss the properties of continuous-time Fourier series. 07

www.FirstRanker.com

www.FirstRanker.com

OR

Q.3 (a) Each of the two sequences x₁[n] and x₂[n] has a period N = 03
 4, and the corresponding Fourier series coefficients are specified as x₁[n]←→a₂ and x₂[n]←→b₂

Where

$$a_0 = a_3 = \frac{1}{2}a_1 = \frac{1}{2}a_2 = 1$$
 and $b_0 = b_1 = b_2 = b_3 = 1$. Using the

multiplication property, determine the Fourier series coefficients c_k for the signal $g[n] = x_1[n] x_2[n]$.

(b) Discuss applications of frequency-shaping filters. 04
Determine whether each of the following statements is true or 07

(c) false. Justify your answers.

- An odd and imaginary signal always has an odd and imaginary Fourier transform.
- The convolution of an odd Fourier transform with an even Fourier transform is always odd.
- Q.4 (a) Explain time reversal and linearity property for the discrete time Fourier transforms.
 - (b) Determine the Fourier transform for $-\pi \le w < \pi$ for the periodic signal $x(n) = \sin\left(\frac{\pi}{3}n + \frac{\pi}{4}\right)$
 - (c) Consider a discrete-time LTI system with impulse response $h(n) = \left(\frac{1}{2}\right)^n u(n)$.

Use Fourier transforms to determine the response for the input $x(n) = \left(\frac{3}{4}\right)^n u(n)$.

OR

- Q.4 (a) Explain differentiation and integration property for the continuous time Fourier transforms.
 - (b) Determine the Fourier transform of periodic signal $x(t) = 1 + \cos\left(6\pi t + \frac{\pi}{8}\right)$
 - (c) Compute the Fourier transform of each of the following signals: 07
 - 1. x[n] = u[n-2] u[n-6]
 - 2. $x[n] = \left(\frac{1}{2}\right)^{-n} u[-n-1]$
- Q.5 (a) Determine the Laplace transform and the associated region of convergence for $x(t) = e^{-2t}u(t) + e^{-3t}u(t)$.
 - (b) Determine the function of time x(t), for the following Laplace transforms and their associated regions of convergence: $\frac{1}{s^2+9}, \quad \Re e\{s\} > 0.$
 - (c) Explain properties of the Z-transform. 07

www.FirstRanker.com

www.FirstRanker.com

OR

- Q.5 (a) Find Z-transform and region of convergence of 03 $x(n) = 7\left(\frac{1}{3}\right)^n u(n) 6\left(\frac{1}{2}\right)^n u(n).$
 - (b) Find inverse Z-transform for $X(z) = \log(1+az^{-1})$, |z| > |a|.
 - (c) Consider the system function corresponding to causal LTI systems: $H(z) = \frac{1}{(1-z^{-1}+\frac{1}{4}z^{-2})(1-\frac{2}{3}z^{-1}+\frac{1}{9}z^{-2})}$.
 - 1. Draw a direct-form block diagram.
 - Draw a block diagram that corresponds to the cascade connection of two second-order block diagrams. Each second-order block diagram should be in direct form.

WWW.FirstRanker.com

