Seat No.: \qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER- III EXAMINATION - SUMMER 2020

Subject Code: 3131707
Date:04/11/2020
Subject Name: Network Analysis
Time: 02:30 PM TO 05:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Marks
Q. 1 (a) Define following terms: (a) Linear and Nonlinear Networks (b) Unilateral and 03Bilateral Networks.
(b) Define following terms: (a) Time-Invariance and Time variance Networks. (b) 04Active and Passive Networks with example.
(c) Explain ideal, practical and dependent voltage and current sources with all07necessary diagrams.
Q. 2 (a) Determine the inductance between the terminals for a three coil shown in fig 1 03
(b) For the network shown in the fig 2, determine the numerical value of the branch 04current i_{1} using sources transformation theorem.(c) Determine the node voltages $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and V_{3} in a network of fig 3, using nodal07analysis.
OR
(c) Find the current I_{1}, I_{2}, I_{3} and I_{4} for the network shown in fig 4, using mesh 07 analysis
Q. 3 (a) State and explain Reciprocity theorem with example. 03
(b) Determine current i in a circuit shown in fig 5, using Super position theorem. 04
(c) Find the Norton's equivalent circuit across the terminal AB of the network 07 shown in fig 6.
OR
Q. 3 (a) State and explain maximum power transfer theorem. Derive the condition for 03 maximum power transfer to Resistive load for DC circuit
(b) State and explain Millman's theorem with proof. 04
(c) Find the current in 6 ohm resistor in the network shown in fig 7, using 07 Thevenin's theorem
Q. 4 (a) Write the initial conditions in the inductor and capacitor at $t=0^{+}$and $t=\infty$. 03
(b) Find out the values of $\mathrm{V}, \mathrm{dV} / \mathrm{dT}$ and $\mathrm{d}^{2} \mathrm{~V} / \mathrm{dT}^{2}$ just after switching (at time t 04$=0^{+}$) in the circuit shown in fig 8 .
(c) For the circuit shown in the fig 9 , the switch ' S ' is at position ' 1 ' and the steady 07 state condition is reached. The switched is moved to position ' 2 ' at $t=0$. Find the current $\mathrm{i}(\mathrm{t})$ in both the cases, i.e. switch at position 1 and switch is at position 2
OR
Q. 4 (a) Write equations of Short circuit Admittance and Open Circuit Impedance 03 parameters of a two port network.
(b) Derive the relationship between h-parameters and ABCD parameters 04
(c) Find Z parameters for the network of fig 10. 07
(b) Explain and derive the step response to R-L series circuit using Laplace Transformation method. (Fig 14.)
(c) In the network of fig 11, if the switch has remained in position A for a long time and then moves to position B at $t=0$. Find $v_{c}(t)$ for $t>=0$ for $R_{2}=405$ ohm. (405Ω resistor is shown in fig.11)

OR

Q. 5 (a) Define following terms: (a) Oriented graph (b) Co-tree. c) Cut-set
(b) How many trees are possible for the graph of the network of fig 12.
(c) For the network shown in fig 13, draw the oriented graph and write i) the Incidence matrix, ii) Tieset matrix, and iii) f-Cutset matrix.

Fig 1.

Fig 4.

Fig 3.

Fig 5.
Fig 6.

Fig 7.

Fig 10.

Fig 12.

Fig 14.
Fig 13.

